Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Examining Human Perception of Generative Content Replacement in Image Privacy Protection

Xu, Anran; Fang, Shitao; Yang, Huan; Hosio, Simo; Yatani, Koji (2024-05-11)

 
Avaa tiedosto
nbnfioulu-202410286473.pdf (27.61Mt)
Lataukset: 

URL:
https://doi.org/10.1145/3613904.3642103

Xu, Anran
Fang, Shitao
Yang, Huan
Hosio, Simo
Yatani, Koji
ACM
11.05.2024

Anran Xu, Shitao Fang, Huan Yang, Simo Hosio, and Koji Yatani. 2024. Examining Human Perception of Generative Content Replacement in Image Privacy Protection. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (CHI '24). Association for Computing Machinery, New York, NY, USA, Article 777, 1–16. https://doi.org/10.1145/3613904.3642103

https://rightsstatements.org/vocab/InC/1.0/
© 2024 Copyright held by the owner/author(s). This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in CHI '24: CHI Conference on Human Factors in Computing Systems, http://dx.doi.org/10.1145/3613904.3642103
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3613904.3642103
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202410286473
Tiivistelmä
Abstract

The richness of the information in photos can often threaten privacy, thus image editing methods are often employed for privacy protection. Existing image privacy protection techniques, like blurring, often struggle to maintain the balance between robust privacy protection and preserving image usability. To address this, we introduce a generative content replacement (GCR) method in image privacy protection, which seamlessly substitutes privacy-threatening contents with similar and realistic substitutes, using state-of-the-art generative techniques. Compared with four prevalent image protection methods, GCR consistently exhibited low detectability, making the detection of edits remarkably challenging. GCR also performed reasonably well in hindering the identification of specific content and managed to sustain the image’s narrative and visual harmony. This research serves as a pilot study and encourages further innovation on GCR and the development of tools that enable human-in-the-loop image privacy protection using approaches similar to GCR.
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen