In-situ quantification and density functional theory elucidation of phase transformation in carbon steel during quenching and partitioning
Wang, Shubo; Kistanov, Andrey A.; King, Graham; Ghosh, Sumit; Singh, Harishchandra; Pallaspuro, Sakari; Rahemtulla, Al; Somani, Mahesh; Kömi, Jukka; Cao, Wei; Huttula, Marko (2021-10-10)
Wang, Shubo
Kistanov, Andrey A.
King, Graham
Ghosh, Sumit
Singh, Harishchandra
Pallaspuro, Sakari
Rahemtulla, Al
Somani, Mahesh
Kömi, Jukka
Cao, Wei
Huttula, Marko
10.10.2021
Wang, S., Kistanov, A. A., King, G., Ghosh, S., Singh, H., Pallaspuro, S., Rahemtulla, A., Somani, M., Kömi, J., Cao, W., & Huttula, M. (2021). In-situ quantification and density functional theory elucidation of phase transformation in carbon steel during quenching and partitioning. Acta Materialia, 221, 117361. https://doi.org/10.1016/j.actamat.2021.117361
https://creativecommons.org/licenses/by/4.0/
© 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
© 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202410246440
https://urn.fi/URN:NBN:fi:oulu-202410246440
Tiivistelmä
Abstract
Phase transformation in low alloyed Fe-C steels during quenching and partitioning (Q&P), though authentically attributed to carbon diffusion, is scarcely quantified experimentally in terms of microstructural evolution and lack of fundamental backing at a quantum mechanics level. Herein, we report on a combined in-situ high energy synchrotron X-ray diffraction and density functional theory (DFT) study to unveil the physical mechanism of phase transformation in a Q&P processed advanced Fe-C steel. Beside a small fraction of bainite, a low air-quenching rate of ∼6 °C/s in the Ms to quenching temperature range leads to carbon enrichment into the untransformed austenite, which simultaneously turns up with the later stage of martensitic transformation at the existing austenite/martensite interfaces. The resulting transformations are ascertained by DFT results and attributed to a second energy barrier in ferrite/martensite facilitation to carbon diffusion to austenite at elevated temperatures, along with the well-known carbon solubility difference/equilibrium in austenite and martensite. The development of cubic martensite in the carbon steel is theoretically elucidated and attributed to more probable hopping sites and diffusion paths of carbon in the ferrite/martensite than in the austenite.
Phase transformation in low alloyed Fe-C steels during quenching and partitioning (Q&P), though authentically attributed to carbon diffusion, is scarcely quantified experimentally in terms of microstructural evolution and lack of fundamental backing at a quantum mechanics level. Herein, we report on a combined in-situ high energy synchrotron X-ray diffraction and density functional theory (DFT) study to unveil the physical mechanism of phase transformation in a Q&P processed advanced Fe-C steel. Beside a small fraction of bainite, a low air-quenching rate of ∼6 °C/s in the Ms to quenching temperature range leads to carbon enrichment into the untransformed austenite, which simultaneously turns up with the later stage of martensitic transformation at the existing austenite/martensite interfaces. The resulting transformations are ascertained by DFT results and attributed to a second energy barrier in ferrite/martensite facilitation to carbon diffusion to austenite at elevated temperatures, along with the well-known carbon solubility difference/equilibrium in austenite and martensite. The development of cubic martensite in the carbon steel is theoretically elucidated and attributed to more probable hopping sites and diffusion paths of carbon in the ferrite/martensite than in the austenite.
Kokoelmat
- Avoin saatavuus [38865]