Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wait or Not to Wait: Evaluating Trade-Offs between Speed and Precision in Blockchain-based Federated Aggregation

Nguyen, Huong; Nguyen, Tri; Loven, Lauri; Pirttikangas, Susanna (2024-09-04)

 
Avaa tiedosto
nbnfioulu-202410156319.pdf (400.9Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICDCSW63686.2024.00019

Nguyen, Huong
Nguyen, Tri
Loven, Lauri
Pirttikangas, Susanna
IEEE
04.09.2024

H. Nguyen, T. Nguyen, L. Lovén and S. Pirttikangas, "Wait or Not to Wait: Evaluating Trade-Offs between Speed and Precision in Blockchain-based Federated Aggregation," 2024 IEEE 44th International Conference on Distributed Computing Systems Workshops (ICDCSW), Jersey City, NJ, USA, 2024, pp. 83-92, doi: 10.1109/ICDCSW63686.2024.00019

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICDCSW63686.2024.00019
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202410156319
Tiivistelmä
Abstract

This paper presents a fully coupled blockchainassisted federated learning architecture that effectively eliminates single points of failure by decentralizing both the training and aggregation tasks across all participants. Our proposed system offers a high degree of flexibility, allowing participants to select shared models and customize the aggregation for local needs, thereby optimizing system performance, including accurate inference results. Notably, the integration of blockchain technology in our work is to promote a trustless environment, ensuring transparency and non-repudiation among participants when abnormalities are detected. To validate the effectiveness, we conducted real-world federated learning deployments on a private Ethereum platform, using two different models, ranging from simple to complex neural networks. The experimental results indicate comparable inference accuracy between centralized and decentralized federated learning settings. Furthermore, our findings indicate that asynchronous aggregation is a feasible option for simple learning models. However, complex learning models require greater training model involvement in the aggregation to achieve high model quality, instead of asynchronous aggregation. With the implementation of asynchronous aggregation and the flexibility to select models, participants anticipate decreased aggregation time in each communication round, while experiencing minimal accuracy trade-off.
Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen