Tabular deep learning: a comparative study applied to multi-task genome-wide prediction
Fan, Yuhua; Waldmann, Patrik (2024-10-04)
Fan, Yuhua
Waldmann, Patrik
Biomed central
04.10.2024
Fan, Y., Waldmann, P. Tabular deep learning: a comparative study applied to multi-task genome-wide prediction. BMC Bioinformatics 25, 322 (2024). https://doi.org/10.1186/s12859-024-05940-1.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202410076200
https://urn.fi/URN:NBN:fi:oulu-202410076200
Tiivistelmä
Abstract
Purpose
More accurate prediction of phenotype traits can increase the success of genomic selection in both plant and animal breeding studies and provide more reliable disease risk prediction in humans. Traditional approaches typically use regression models based on linear assumptions between the genetic markers and the traits of interest. Non-linear models have been considered as an alternative tool for modeling genomic interactions (i.e. non-additive effects) and other subtle non-linear patterns between markers and phenotype. Deep learning has become a state-of-the-art non-linear prediction method for sound, image and language data. However, genomic data is better represented in a tabular format. The existing literature on deep learning for tabular data proposes a wide range of novel architectures and reports successful results on various datasets. Tabular deep learning applications in genome-wide prediction (GWP) are still rare. In this work, we perform an overview of the main families of recent deep learning architectures for tabular data and apply them to multi-trait regression and multi-class classification for GWP on real gene datasets.
Methods
The study involves an extensive overview of recent deep learning architectures for tabular data learning: NODE, TabNet, TabR, TabTransformer, FT-Transformer, AutoInt, GANDALF, SAINT and LassoNet. These architectures are applied to multi-trait GWP. Comprehensive benchmarks of various tabular deep learning methods are conducted to identify best practices and determine their effectiveness compared to traditional methods.
Results
Extensive experimental results on several genomic datasets (three for multi-trait regression and two for multi-class classification) highlight LassoNet as a standout performer, surpassing both other tabular deep learning models and the highly efficient tree based LightGBM method in terms of both best prediction accuracy and computing efficiency.
Conclusion
Through series of evaluations on real-world genomic datasets, the study identifies LassoNet as a standout performer, surpassing decision tree methods like LightGBM and other tabular deep learning architectures in terms of both predictive accuracy and computing efficiency. Moreover, the inherent variable selection property of LassoNet provides a systematic way to find important genetic markers that contribute to phenotype expression.
Purpose
More accurate prediction of phenotype traits can increase the success of genomic selection in both plant and animal breeding studies and provide more reliable disease risk prediction in humans. Traditional approaches typically use regression models based on linear assumptions between the genetic markers and the traits of interest. Non-linear models have been considered as an alternative tool for modeling genomic interactions (i.e. non-additive effects) and other subtle non-linear patterns between markers and phenotype. Deep learning has become a state-of-the-art non-linear prediction method for sound, image and language data. However, genomic data is better represented in a tabular format. The existing literature on deep learning for tabular data proposes a wide range of novel architectures and reports successful results on various datasets. Tabular deep learning applications in genome-wide prediction (GWP) are still rare. In this work, we perform an overview of the main families of recent deep learning architectures for tabular data and apply them to multi-trait regression and multi-class classification for GWP on real gene datasets.
Methods
The study involves an extensive overview of recent deep learning architectures for tabular data learning: NODE, TabNet, TabR, TabTransformer, FT-Transformer, AutoInt, GANDALF, SAINT and LassoNet. These architectures are applied to multi-trait GWP. Comprehensive benchmarks of various tabular deep learning methods are conducted to identify best practices and determine their effectiveness compared to traditional methods.
Results
Extensive experimental results on several genomic datasets (three for multi-trait regression and two for multi-class classification) highlight LassoNet as a standout performer, surpassing both other tabular deep learning models and the highly efficient tree based LightGBM method in terms of both best prediction accuracy and computing efficiency.
Conclusion
Through series of evaluations on real-world genomic datasets, the study identifies LassoNet as a standout performer, surpassing decision tree methods like LightGBM and other tabular deep learning architectures in terms of both predictive accuracy and computing efficiency. Moreover, the inherent variable selection property of LassoNet provides a systematic way to find important genetic markers that contribute to phenotype expression.
Kokoelmat
- Avoin saatavuus [38841]