Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

ST-Phys: Unsupervised Spatio-Temporal Contrastive Remote Physiological Measurement

Cao, Mingyue; Cheng, Xu; Liu, Xingyu; Jiang, Yan; Yu, Hao; Shi, Jingang (2024-05-14)

 
Avaa tiedosto
nbnfioulu-202409256043.pdf (9.484Mt)
Lataukset: 

URL:
https://doi.org/10.1109/JBHI.2024.3400869

Cao, Mingyue
Cheng, Xu
Liu, Xingyu
Jiang, Yan
Yu, Hao
Shi, Jingang
IEEE
14.05.2024

M. Cao, X. Cheng, X. Liu, Y. Jiang, H. Yu and J. Shi, "ST-Phys: Unsupervised Spatio-Temporal Contrastive Remote Physiological Measurement," in IEEE Journal of Biomedical and Health Informatics, vol. 28, no. 8, pp. 4613-4624, Aug. 2024, doi: 10.1109/JBHI.2024.3400869.

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/JBHI.2024.3400869
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202409256043
Tiivistelmä
Abstract

Remote photoplethysmography (rPPG) is a non-contact method that employs facial videos for measuring physiological parameters. Existing rPPG methods have achieved remarkable performance. However, the success mainly profits from supervised learning over massive labeled data. On the other hand, existing unsupervised rPPG methods fail to fully utilize spatio-temporal features and encounter challenges in low-light or noise environments. To address these problems, we propose an unsupervised contrast learning approach, ST-Phys. We incorporate a low-light enhancement module, a temporal dilated module, and a spatial enhanced module to better deal with long-term dependencies under the random low-light conditions. In addition, we design a circular margin loss, wherein rPPG signals originating from identical videos are attracted, while those from distinct videos are repelled. Our method is assessed on six openly accessible datasets, including RGB and NIR videos. Extensive experiments reveal the superior performance of our proposed ST-Phys over state-of-the-art unsupervised rPPG methods. Moreover, it offers advantages in parameter reduction and noise robustness.
Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen