Device-Level Energy Efficient Strategies in Machine Type Communications: Power, Processing, Sensing, and RF Perspectives
Ntabeni, Unalido; Basutli, Bokamoso; Alves, Hirley; Chuma, Joseph (2024-08-14)
Ntabeni, Unalido
Basutli, Bokamoso
Alves, Hirley
Chuma, Joseph
IEEE communications society
14.08.2024
U. Ntabeni, B. Basutli, H. Alves and J. Chuma, "Device-Level Energy Efficient Strategies in Machine Type Communications: Power, Processing, Sensing, and RF Perspectives," in IEEE Open Journal of the Communications Society, vol. 5, pp. 5054-5087, 2024, doi: 10.1109/OJCOMS.2024.3443920.
https://creativecommons.org/licenses/by-nc-nd/4.0/
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/
© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202408295646
https://urn.fi/URN:NBN:fi:oulu-202408295646
Tiivistelmä
Abstract
The objective of our work is to provide an in-depth analysis and compilation of device-level strategies for enhancing the energy efficiency of Machine-Type Communication (MTC). The necessity for such strategies stems from the growing demand for sustainable and energy-efficient communication systems in various industries. We begin by presenting a comprehensive background on MTC, detailing its essential characteristics, the architecture of machine-type devices (MTDs), and their diverse applications. Next, we explore a range of energy-efficient techniques designed to optimize key subsystems of MTDs. These subsystems include the radio for communication efficiency, processing power for computational efficiency, and sensing subsystems for data acquisition efficiency. Each technique is evaluated for its potential impact on overall energy consumption and the trade-offs and limitations associated with these techniques are also assessed. In concluding, the paper highlights potential future research directions in this domain, outlining the ongoing need for innovative solutions to meet the escalating demands of energy efficiency in MTC.
The objective of our work is to provide an in-depth analysis and compilation of device-level strategies for enhancing the energy efficiency of Machine-Type Communication (MTC). The necessity for such strategies stems from the growing demand for sustainable and energy-efficient communication systems in various industries. We begin by presenting a comprehensive background on MTC, detailing its essential characteristics, the architecture of machine-type devices (MTDs), and their diverse applications. Next, we explore a range of energy-efficient techniques designed to optimize key subsystems of MTDs. These subsystems include the radio for communication efficiency, processing power for computational efficiency, and sensing subsystems for data acquisition efficiency. Each technique is evaluated for its potential impact on overall energy consumption and the trade-offs and limitations associated with these techniques are also assessed. In concluding, the paper highlights potential future research directions in this domain, outlining the ongoing need for innovative solutions to meet the escalating demands of energy efficiency in MTC.
Kokoelmat
- Avoin saatavuus [34540]