Whistler echo trains triggered by energetic winter lightning
Kolmašová, I.; Santolík, O.; Manninen, J. (2024-08-21)
Kolmašová, I.
Santolík, O.
Manninen, J.
Nature publishing group
21.08.2024
Kolmašová, I., Santolík, O. & Manninen, J. Whistler echo trains triggered by energetic winter lightning. Nat Commun 15, 7166 (2024). https://doi.org/10.1038/s41467-024-51684-0.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202408295638
https://urn.fi/URN:NBN:fi:oulu-202408295638
Tiivistelmä
Abstract
Lightning generated electromagnetic impulses propagating in the magnetospheric plasma disperse into whistlers – several seconds long radio wave signals with decreasing frequency. Sometimes, multiple reflections form long echo trains containing many whistlers with increasing dispersion. On January 3, 2017, two necessary prerequisites – a pronounced lightning activity and a magnetospheric plasma duct – allowed for observations of a large number of whistler echo trains by the high-latitude station in Kannuslehto, Finland. Our investigation reveals that the duct existed for nearly eight hours. We show that causative lightning sferics arrived to the duct entry from three different winter thunderstorms: a small storm at the Norwegian coast, which produced energetic lightning capable to trigger echo trains in 50% of cases, and two large storms at unexpectedly distant locations in the Mediterranean region. Our results show that intense thunderstorms can repetitively feed electromagnetic energy into a magnetospheric duct and form whistler echo trains after subionospheric propagation over distances as large as 4000 km.
Lightning generated electromagnetic impulses propagating in the magnetospheric plasma disperse into whistlers – several seconds long radio wave signals with decreasing frequency. Sometimes, multiple reflections form long echo trains containing many whistlers with increasing dispersion. On January 3, 2017, two necessary prerequisites – a pronounced lightning activity and a magnetospheric plasma duct – allowed for observations of a large number of whistler echo trains by the high-latitude station in Kannuslehto, Finland. Our investigation reveals that the duct existed for nearly eight hours. We show that causative lightning sferics arrived to the duct entry from three different winter thunderstorms: a small storm at the Norwegian coast, which produced energetic lightning capable to trigger echo trains in 50% of cases, and two large storms at unexpectedly distant locations in the Mediterranean region. Our results show that intense thunderstorms can repetitively feed electromagnetic energy into a magnetospheric duct and form whistler echo trains after subionospheric propagation over distances as large as 4000 km.
Kokoelmat
- Avoin saatavuus [34589]