Conceptual design of furfural extraction, oxidative upgrading and product recovery: COSMO-RS-based process-level solvent screening
Tuppurainen, Ville; Fleitmann, Lorenz; Kangas, Jani; Leonhard, Kai; Tanskanen, Juha (2024-08-20)
Tuppurainen, Ville
Fleitmann, Lorenz
Kangas, Jani
Leonhard, Kai
Tanskanen, Juha
Elsevier
20.08.2024
Tuppurainen, V., Fleitmann, L., Kangas, J., Leonhard, K., & Tanskanen, J. (2024). Conceptual design of furfural extraction, oxidative upgrading and product recovery: COSMO-RS-based process-level solvent screening. Computers & Chemical Engineering, 191, 108835. https://doi.org/10.1016/j.compchemeng.2024.108835.
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202408295626
https://urn.fi/URN:NBN:fi:oulu-202408295626
Tiivistelmä
Abstract
Liquid phase oxidation of furfural using hydrogen peroxide offers a promising route for bio-based C4 furanones and diacids; however, only dilute water-based process designs have been previously suggested that have limited techno-economic potential. In this study, a conceptual process design is presented, where aqueous furfural is extracted using an organic solvent, coupled with peroxide oxidation and product recovery in the presence of the solvent. To address the problem of solvent selection, the COSMO-RS-based solvent screening framework is applied, where quantum mechanics-based thermodynamics are utilized in pinch-based process models. About 2500 solvent candidates were identified as feasible. Focusing on a set of 400 solvent candidates revealed energy consumption values (Qreb,tot/ṁprod recov) between approximately 2 MWh/tonne and 33 MWh/tonne, signifying the potential of the solvent-based process in outperforming the reference aqueous process (49.4 MWh/tonne). The study provides potential solvent candidates and future directions to consider in more costly computational and experimental efforts.
Liquid phase oxidation of furfural using hydrogen peroxide offers a promising route for bio-based C4 furanones and diacids; however, only dilute water-based process designs have been previously suggested that have limited techno-economic potential. In this study, a conceptual process design is presented, where aqueous furfural is extracted using an organic solvent, coupled with peroxide oxidation and product recovery in the presence of the solvent. To address the problem of solvent selection, the COSMO-RS-based solvent screening framework is applied, where quantum mechanics-based thermodynamics are utilized in pinch-based process models. About 2500 solvent candidates were identified as feasible. Focusing on a set of 400 solvent candidates revealed energy consumption values (Qreb,tot/ṁprod recov) between approximately 2 MWh/tonne and 33 MWh/tonne, signifying the potential of the solvent-based process in outperforming the reference aqueous process (49.4 MWh/tonne). The study provides potential solvent candidates and future directions to consider in more costly computational and experimental efforts.
Kokoelmat
- Avoin saatavuus [34589]