The rate of W chromosome degeneration across multiple avian neo-sex chromosomes
Sigeman, Hanna; Downing, Philip A; Zhang, Hongkai; Hansson, Bengt (2024-07-17)
Sigeman, Hanna
Downing, Philip A
Zhang, Hongkai
Hansson, Bengt
Springer
17.07.2024
Sigeman, H., Downing, P.A., Zhang, H. et al. The rate of W chromosome degeneration across multiple avian neo-sex chromosomes. Sci Rep 14, 16548 (2024). https://doi.org/10.1038/s41598-024-66470-7
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202408215528
https://urn.fi/URN:NBN:fi:oulu-202408215528
Tiivistelmä
Abstract
When sex chromosomes evolve recombination suppression, the sex-limited chromosome (Y/W) commonly degenerate by losing functional genes. The rate of Y/W degeneration is believed to slow down over time as the most essential genes are maintained by purifying selection, but supporting data are scarce especially for ZW systems. Here, we study W degeneration in Sylvioidea songbirds where multiple autosomal translocations to the sex chromosomes, and multiple recombination suppression events causing separate evolutionary strata, have occurred during the last ~ 28.1–4.5 million years (Myr). We show that the translocated regions have maintained 68.3–97.7% of their original gene content, compared to only 4.2% on the much older ancestral W chromosome. By mapping W gene losses onto a dated phylogeny, we estimate an average gene loss rate of 1.0% per Myr, with only moderate variation between four independent lineages. Consistent with previous studies, evolutionarily constrained and haploinsufficient genes were preferentially maintained on W. However, the gene loss rate did not show any consistent association with strata age or with the number of W genes at strata formation. Our study provides a unique account on the pace of W gene loss and reinforces the significance of purifying selection in maintaining essential genes on sex chromosomes.
When sex chromosomes evolve recombination suppression, the sex-limited chromosome (Y/W) commonly degenerate by losing functional genes. The rate of Y/W degeneration is believed to slow down over time as the most essential genes are maintained by purifying selection, but supporting data are scarce especially for ZW systems. Here, we study W degeneration in Sylvioidea songbirds where multiple autosomal translocations to the sex chromosomes, and multiple recombination suppression events causing separate evolutionary strata, have occurred during the last ~ 28.1–4.5 million years (Myr). We show that the translocated regions have maintained 68.3–97.7% of their original gene content, compared to only 4.2% on the much older ancestral W chromosome. By mapping W gene losses onto a dated phylogeny, we estimate an average gene loss rate of 1.0% per Myr, with only moderate variation between four independent lineages. Consistent with previous studies, evolutionarily constrained and haploinsufficient genes were preferentially maintained on W. However, the gene loss rate did not show any consistent association with strata age or with the number of W genes at strata formation. Our study provides a unique account on the pace of W gene loss and reinforces the significance of purifying selection in maintaining essential genes on sex chromosomes.
Kokoelmat
- Avoin saatavuus [38865]
Samankaltainen aineisto
Näytetään aineisto, joilla on samankaltaisia nimekkeitä, tekijöitä tai asiasanoja.
-
A novel neo-sex chromosome in <em>Sylvietta brachyura</em> (Macrosphenidae) adds to the extraordinary avian sex chromosome diversity among Sylvioidea songbirds
Sigeman, Hanna; Zhang, Hongkai; Abed, Salwan Ali; Hansson, Bengt
Journal of evolutionary biology : 12 -
Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer
Pussila, Marjaana; Törönen, Petri; Einarsdottir, Elisabet; Katayama, Shintaro; Krjutškov, Kaarel; Holm, Liisa; Kere, Juha; Peltomäki, Päivi; Mäkinen, Markus J.; Linden, Jere; Nyström, Minna
Carcinogenesis : 6 (Oxford University Press, 26.04.2018) -
Genome-wide meta-analysis identifies genetic locus on chromosome 9 associated with Modic changes
Freidin, Maxim; Kraatari, Minna; Skarp, Sini; Määttä, Juhani; Kettunen, Johannes; Niinimäki, Jaakko; Karppinen, Jaro; Williams, Frances; Männikkö, Minna
Journal of medical genetics : 7 (BMJ, 24.06.2019)