Hybrid Beamforming for mm-Wave Massive MIMO Systems with Partially Connected RF Architecture
Majidzadeh, Mohammad; Kaleva, Jarkko; Tervo, Nuutti; Pennanen, Harri; Tölli, Antti; Latva-aho, Matti (2024-07-02)
Majidzadeh, Mohammad
Kaleva, Jarkko
Tervo, Nuutti
Pennanen, Harri
Tölli, Antti
Latva-aho, Matti
Springer
02.07.2024
Majidzadeh, M., Kaleva, J., Tervo, N. et al. Hybrid Beamforming for mm-Wave Massive MIMO Systems with Partially Connected RF Architecture. Wireless Pers Commun 136, 1947–1979 (2024). https://doi.org/10.1007/s11277-024-11026-1.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202408085271
https://urn.fi/URN:NBN:fi:oulu-202408085271
Tiivistelmä
Abstract
To satisfy the capacity requirements of future mobile systems, under-utilized millimeter wave frequencies can be efficiently exploited by employing massive multiple input-multiple output (MIMO) technology with highly directive beamforming. Hybrid analog-digital beamforming has been recognised as a promising approach for large-scale MIMO implementations with a reduced number of costly and power-hungry radio frequency (RF) chains. In comparison to fully connected architecture, hybrid beamforming (HBF) with partially connected RF architecture is particularly appealing for the practical implementation due to less complex RF power division and combining networks. In this paper, we first formulate single- and multi-user rate maximization problems as weighted minimum mean square error (WMMSE) and derive solutions for hybrid beamformers using alternating optimization. The algorithms are designed for the full-array- and sub-array-based processing strategies of partially connected HBF architecture. In addition, we propose lower complexity sub-array-based zero-forcing algorithms. The performance of the proposed algorithms is evaluated in two different channel models, a simple geometric model and a realistic statistical model. The performance results of the WMMSE HBF algorithms are meant to reveal the potential of partially connected HBF and serve as upper bounds for lower complexity methods. Numerical results imply that properly designed partially connected HBF has the potential to provide an good compromise between hardware complexity and system performance in comparison to fully digital beamforming.
To satisfy the capacity requirements of future mobile systems, under-utilized millimeter wave frequencies can be efficiently exploited by employing massive multiple input-multiple output (MIMO) technology with highly directive beamforming. Hybrid analog-digital beamforming has been recognised as a promising approach for large-scale MIMO implementations with a reduced number of costly and power-hungry radio frequency (RF) chains. In comparison to fully connected architecture, hybrid beamforming (HBF) with partially connected RF architecture is particularly appealing for the practical implementation due to less complex RF power division and combining networks. In this paper, we first formulate single- and multi-user rate maximization problems as weighted minimum mean square error (WMMSE) and derive solutions for hybrid beamformers using alternating optimization. The algorithms are designed for the full-array- and sub-array-based processing strategies of partially connected HBF architecture. In addition, we propose lower complexity sub-array-based zero-forcing algorithms. The performance of the proposed algorithms is evaluated in two different channel models, a simple geometric model and a realistic statistical model. The performance results of the WMMSE HBF algorithms are meant to reveal the potential of partially connected HBF and serve as upper bounds for lower complexity methods. Numerical results imply that properly designed partially connected HBF has the potential to provide an good compromise between hardware complexity and system performance in comparison to fully digital beamforming.
Kokoelmat
- Avoin saatavuus [34343]