Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

MyoKey: Inertial Motion Sensing and Gesture-Based QWERTY Keyboard for Extended Realities

Shatilov, Kirill. A. A.; Kwon, Young. D. D.; Lee, Lik-Hang; Chatzopoulos, Dimitris; Hui, Pan (2022-03-18)

 
Avaa tiedosto
nbnfioulu-202407055127.pdf (4.762Mt)
Lataukset: 

URL:
https://doi.org/10.1109/TMC.2022.3156939

Shatilov, Kirill. A. A.
Kwon, Young. D. D.
Lee, Lik-Hang
Chatzopoulos, Dimitris
Hui, Pan
IEEE
18.03.2022

K. A. Shatilov, Y. D. Kwon, L. -H. Lee, D. Chatzopoulos and P. Hui, "MyoKey: Inertial Motion Sensing and Gesture-Based QWERTY Keyboard for Extended Realities," in IEEE Transactions on Mobile Computing, vol. 22, no. 8, pp. 4807-4821, 1 Aug. 2023, doi: 10.1109/TMC.2022.3156939

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TMC.2022.3156939
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202407055127
Tiivistelmä
Abstract

Usability challenges and social acceptance of textual input in a context of extended realities (XR) motivate the research of novel input modalities. We investigate the fusion of inertial measurement unit (IMU) control and surface electromyography (sEMG) gesture recognition applied to text entry using a QWERTY-layout virtual keyboard. We design, implement, and evaluate the proposed multi-modal solution named MyoKey. The user can select characters with a combination of arm movements and hand gestures. MyoKey employs a lightweight convolutional neural network classifier that can be deployed on a mobile device with insignificant inference time. We demonstrate the practicality of interruption-free text entry with MyoKey, by recruiting 12 participants and by testing three sets of grasp micro-gestures in three scenarios: empty hand text input, tripod grasp (e.g., pen), and a cylindrical grasp (e.g., umbrella). With MyoKey, users achieve an average text entry rate of 9.33 words per minute (WPM), 8.76 WPM, and 8.35 WPM for the freehand, tripod grasp, and cylindrical grasp conditions, respectively.
Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen