Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

6G Fresnel Spot Beamfocusing using Large-Scale Metasurfaces: A Distributed DRL-Based Approach

Monemi, Mehdi; Fallah, Mohammad Amir; Rasti, Mehdi; Latva-Aho, Matti (2024-05-08)

 
Avaa tiedosto
nbnfioulu-202406204821.pdf (2.329Mt)
Lataukset: 

URL:
https://doi.org/10.1109/TMC.2024.3398296

Monemi, Mehdi
Fallah, Mohammad Amir
Rasti, Mehdi
Latva-Aho, Matti
IEEE
08.05.2024

M. Monemi, M. A. Fallah, M. Rasti and M. Latva-Aho, "6G Fresnel Spot Beamfocusing using Large-Scale Metasurfaces: A Distributed DRL-Based Approach," in IEEE Transactions on Mobile Computing, vol. 23, no. 12, pp. 11670-11684, Dec. 2024, doi: 10.1109/TMC.2024.3398296

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TMC.2024.3398296
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202406204821
Tiivistelmä
Abstract

We propose a novel approach to smart spot-beamforming (SBF) in the Fresnel zone leveraging extremely large-scale programmable metasurfaces (ELPMs). A smart SBF scheme aims to adaptively concentrate the aperture's radiating power exactly at a desired focal point (DFP) in the 3D space utilizing some Machine Learning (ML) method. This offers numerous advantages for next-generation networks including ultra-high-speed wireless communication, location-based multiple access (LDMA), efficient wireless power transfer (WPT), interference mitigation, and improved information security. SBF necessitates ELPMs with precise channel state information (CSI) for all ELPM elements. However, obtaining exact CSI for ELPMs is not feasible in all environments; we alleviate this by developing a novel CSI-independent ML scheme based on the TD3 deep-reinforcement-learning (DRL) method. While the proposed ML-based scheme is well-suited for relatively small-size arrays, the computational complexity is unaffordable for ELPMs. To overcome this limitation, we introduce a modular highly scalable structure composed of multiple sub-arrays, each equipped with a TD3-DRL optimizer. This setup enables collaborative optimization of the radiated power at the DFP, significantly reducing computational complexity while enhancing learning speed. The proposed structure's benefits in terms of 3D spot-like power distribution, convergence rate, and scalability are validated through simulation results.
Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen