Inter- and Intra-Day Precision of a Low-Cost and Wearable Bioelectrical Impedance Analysis Device
Robertz, Leon; Rieppo, Lassi; Korkala, Seppo; Jaako, Tommi; Saarakkala, Simo (2024-05-05)
Robertz, Leon
Rieppo, Lassi
Korkala, Seppo
Jaako, Tommi
Saarakkala, Simo
Springer
05.05.2024
Robertz, L., Rieppo, L., Korkala, S., Jaako, T., Saarakkala, S. (2024). Inter- and Intra-Day Precision of a Low-Cost and Wearable Bioelectrical Impedance Analysis Device. In: Särestöniemi, M., et al. Digital Health and Wireless Solutions. NCDHWS 2024. Communications in Computer and Information Science, vol 2084. Springer, Cham. https://doi.org/10.1007/978-3-031-59091-7_29
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202405304108
https://urn.fi/URN:NBN:fi:oulu-202405304108
Tiivistelmä
Abstract
Bioimpedance analysis (BIA) is a non-invasive and safe method to measure body composition. Nowadays, due to technological progress, smaller and cheaper devices allow the implementation of BIA into wearable devices. In this pilot study, we analyzed the measurement precision of a cheap BIA solution for wearable devices. Intra-session, intra-day, and inter-day reproducibility of raw impedance values from three subjects at three different body locations (hand-to-hand, hand-to-torso, torso-to-torso), and for three different frequencies (6, 54, and 500 kHz) were analyzed using the coefficient of variation (CV%). Hand-to-hand and hand-to-torso measurements resulted, on average, in high intra-session (CV% = 0.14% and CV% = 0.11%, respectively), intra-day (CV% = 1.67% and CV% = 1.26%, respectively), and inter-day (CV% = 1.53% and CV% = 1.31%) precision. Absolute impedance values for the torso-to-torso measurements showed a larger mean variation (intra-session CV% = 0.68%; intra-day CV% = 5.53%, inter-day CV% = 3.13%). Overall, this cheap BIA solution shows high precision and promising usability for further integration into a wearable measurement environment.
Bioimpedance analysis (BIA) is a non-invasive and safe method to measure body composition. Nowadays, due to technological progress, smaller and cheaper devices allow the implementation of BIA into wearable devices. In this pilot study, we analyzed the measurement precision of a cheap BIA solution for wearable devices. Intra-session, intra-day, and inter-day reproducibility of raw impedance values from three subjects at three different body locations (hand-to-hand, hand-to-torso, torso-to-torso), and for three different frequencies (6, 54, and 500 kHz) were analyzed using the coefficient of variation (CV%). Hand-to-hand and hand-to-torso measurements resulted, on average, in high intra-session (CV% = 0.14% and CV% = 0.11%, respectively), intra-day (CV% = 1.67% and CV% = 1.26%, respectively), and inter-day (CV% = 1.53% and CV% = 1.31%) precision. Absolute impedance values for the torso-to-torso measurements showed a larger mean variation (intra-session CV% = 0.68%; intra-day CV% = 5.53%, inter-day CV% = 3.13%). Overall, this cheap BIA solution shows high precision and promising usability for further integration into a wearable measurement environment.
Kokoelmat
- Avoin saatavuus [34516]