A Hybrid Images Deep Trained Feature Extraction and Ensemble Learning Models for Classification of Multi Disease in Fundus Images
Verma, Jyoti; Kansal, Isha; Popli, Renu; Khullar, Vikas; Singh, Daljeet; Snehi, Manish; Kumar, Rajeev (2024-05-05)
Verma, Jyoti
Kansal, Isha
Popli, Renu
Khullar, Vikas
Singh, Daljeet
Snehi, Manish
Kumar, Rajeev
Springer
05.05.2024
Verma, J. et al. (2024). A Hybrid Images Deep Trained Feature Extraction and Ensemble Learning Models for Classification of Multi Disease in Fundus Images. In: Särestöniemi, M., et al. Digital Health and Wireless Solutions. NCDHWS 2024. Communications in Computer and Information Science, vol 2084. Springer, Cham. https://doi.org/10.1007/978-3-031-59091-7_14
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202405304107
https://urn.fi/URN:NBN:fi:oulu-202405304107
Tiivistelmä
Abstract
Retinal disorders, including diabetic retinopathy and macular degeneration due to aging, can lead to preventable blindness in diabetics. Vision loss caused by diseases that affect the retinal fundus cannot be reversed if not diagnosed and treated on time. This paper employs deep-learned feature extraction with ensemble learning models to improve the multi-disease classification of fundus images. This research presents a novel approach to the multi-classification of fundus images, utilizing deep-learned feature extraction techniques and ensemble learning to diagnose retinal disorders and diagnosing eye illnesses involving feature extraction, classification, and preprocessing of fundus images. The study involves analysis of deep learning and implementation of image processing. The ensemble learning classifiers have used retinal photos to increase the classification accuracy. The results demonstrate improved accuracy in diagnosing retinal disorders using DL feature extraction and ensemble learning models. The study achieved an overall accuracy of 87.2%, which is a significant improvement over the previous study. The deep learning models utilized in the study, including NASNetMobile, InceptionResNetV4, VGG16, and Xception, were effective in extracting relevant features from the Fundus images. The average F1-score for Extra Tree was 99%, while for Histogram Gradient Boosting and Random Forest, it was 98.8% and 98.4%, respectively. The results show that all three algorithms are suitable for the classification task. The combination of DenseNet feature extraction technique and RF, ET, and HG classifiers outperforms other techniques and classifiers. This indicates that using DenseNet for feature extraction can effectively enhance the performance of classifiers in the task of image classification.
Retinal disorders, including diabetic retinopathy and macular degeneration due to aging, can lead to preventable blindness in diabetics. Vision loss caused by diseases that affect the retinal fundus cannot be reversed if not diagnosed and treated on time. This paper employs deep-learned feature extraction with ensemble learning models to improve the multi-disease classification of fundus images. This research presents a novel approach to the multi-classification of fundus images, utilizing deep-learned feature extraction techniques and ensemble learning to diagnose retinal disorders and diagnosing eye illnesses involving feature extraction, classification, and preprocessing of fundus images. The study involves analysis of deep learning and implementation of image processing. The ensemble learning classifiers have used retinal photos to increase the classification accuracy. The results demonstrate improved accuracy in diagnosing retinal disorders using DL feature extraction and ensemble learning models. The study achieved an overall accuracy of 87.2%, which is a significant improvement over the previous study. The deep learning models utilized in the study, including NASNetMobile, InceptionResNetV4, VGG16, and Xception, were effective in extracting relevant features from the Fundus images. The average F1-score for Extra Tree was 99%, while for Histogram Gradient Boosting and Random Forest, it was 98.8% and 98.4%, respectively. The results show that all three algorithms are suitable for the classification task. The combination of DenseNet feature extraction technique and RF, ET, and HG classifiers outperforms other techniques and classifiers. This indicates that using DenseNet for feature extraction can effectively enhance the performance of classifiers in the task of image classification.
Kokoelmat
- Avoin saatavuus [34547]