A Novel Industrial Robot Calibration Method Based on Multi-Planar Constraints
Chen, Tinghui; Li, Shuai (2024-01-29)
Chen, Tinghui
Li, Shuai
IEEE
29.01.2024
T. Chen and S. Li, "A Novel Industrial Robot Calibration Method Based on Multi-Planar Constraints," 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, Oahu, HI, USA, 2023, pp. 4046-4051, doi: 10.1109/SMC53992.2023.10394495
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202405284024
https://urn.fi/URN:NBN:fi:oulu-202405284024
Tiivistelmä
Abstract
Calibration technology is an essential technique to boost the absolute positioning accuracy of robots. However, an industrial robot's working space is mostly restricted in real working environments, making the collected samples fail in covering the actual working space to result in the overall migration data. To address this vital issue, this work proposes a novel industrial robot calibrator that integrates a measurement configurations selection (MCS) method and an alternation-direction-method-of-multipliers with multiple planes constraints (AMPC) algorithm into its working process, whose ideas are three-fold: a) selecting a group of optimal measurement configurations based on the observability index to suppress the measurement noises, b) developing an AMPC algorithm that evidently enhances the calibration accuracy and suppresses the long-tail convergence, c) proposing an industrial robot calibration algorithm that incorporates MCS and AMPC to optimize an industrial robot's kinematic parameters efficiently. For validating its performance, a public-available dataset (HRS-P) is established on an HRS-JR680 industrial robot. Extensive experimental results demonstrate that the proposed calibrator outperforms several state-of-the-art models in calibration accuracy.
Calibration technology is an essential technique to boost the absolute positioning accuracy of robots. However, an industrial robot's working space is mostly restricted in real working environments, making the collected samples fail in covering the actual working space to result in the overall migration data. To address this vital issue, this work proposes a novel industrial robot calibrator that integrates a measurement configurations selection (MCS) method and an alternation-direction-method-of-multipliers with multiple planes constraints (AMPC) algorithm into its working process, whose ideas are three-fold: a) selecting a group of optimal measurement configurations based on the observability index to suppress the measurement noises, b) developing an AMPC algorithm that evidently enhances the calibration accuracy and suppresses the long-tail convergence, c) proposing an industrial robot calibration algorithm that incorporates MCS and AMPC to optimize an industrial robot's kinematic parameters efficiently. For validating its performance, a public-available dataset (HRS-P) is established on an HRS-JR680 industrial robot. Extensive experimental results demonstrate that the proposed calibrator outperforms several state-of-the-art models in calibration accuracy.
Kokoelmat
- Avoin saatavuus [34304]