Mobile Robot + IoT: Project of Sustainable Technology for Sanitizing Broiler Poultry Litter
Kunz Cechinel, Alan; Soares, Carlos Eduardo; Pfleger, Sergio Genilson; De Oliveira, Leonardo Luiz Gambalonga Alves; Américo de Andrade, Ederson; Damo Bertoli, Claudia; De Rolt, Carlos Roberto; De Pieri, Edson Roberto; Plentz, Patricia Della Méa; Röning, Juha (2024-05-11)
Kunz Cechinel, Alan
Soares, Carlos Eduardo
Pfleger, Sergio Genilson
De Oliveira, Leonardo Luiz Gambalonga Alves
Américo de Andrade, Ederson
Damo Bertoli, Claudia
De Rolt, Carlos Roberto
De Pieri, Edson Roberto
Plentz, Patricia Della Méa
Röning, Juha
MDPI
11.05.2024
Kunz Cechinel A, Soares CE, Pfleger SG, De Oliveira LLGA, Américo de Andrade E, Damo Bertoli C, De Rolt CR, De Pieri ER, Plentz PDM, Röning J. Mobile Robot + IoT: Project of Sustainable Technology for Sanitizing Broiler Poultry Litter. Sensors. 2024; 24(10):3049. https://doi.org/10.3390/s24103049.
https://creativecommons.org/licenses/by/4.0/
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202405284004
https://urn.fi/URN:NBN:fi:oulu-202405284004
Tiivistelmä
Abstract
The traditional aviary decontamination process involves farmers applying pesticides to the aviary’s ground. These agricultural defenses are easily dispersed in the air, making the farmers susceptible to chronic diseases related to recurrent exposure. Industry 5.0 raises new pillars of research and innovation in transitioning to more sustainable, human-centric, and resilient companies. Based on these concepts, this paper presents a new aviary decontamination process that uses IoT and a robotic platform coupled with ozonizer (O3) and ultraviolet light (UVL). These clean technologies can successfully decontaminate poultry farms against pathogenic microorganisms, insects, and mites. Also, they can degrade toxic compounds used to control living organisms. This new decontamination process uses physicochemical information from the poultry litter through sensors installed in the environment, which allows accurate and safe disinfection. Different experimental tests were conducted to construct the system. First, tests related to measuring soil moisture, temperature, and pH were carried out, establishing the range of use and the confidence interval of the measurements. The robot’s navigation uses a back-and-forth motion that parallels the aviary’s longest side because it reduces the number of turns, reducing energy consumption. This task becomes more accessible because of the aviaries’ standardized geometry. Furthermore, the prototype was tested in a real aviary to confirm the innovation, safety, and effectiveness of the proposal. Tests have shown that the UV + ozone combination is sufficient to disinfect this environment.
The traditional aviary decontamination process involves farmers applying pesticides to the aviary’s ground. These agricultural defenses are easily dispersed in the air, making the farmers susceptible to chronic diseases related to recurrent exposure. Industry 5.0 raises new pillars of research and innovation in transitioning to more sustainable, human-centric, and resilient companies. Based on these concepts, this paper presents a new aviary decontamination process that uses IoT and a robotic platform coupled with ozonizer (O3) and ultraviolet light (UVL). These clean technologies can successfully decontaminate poultry farms against pathogenic microorganisms, insects, and mites. Also, they can degrade toxic compounds used to control living organisms. This new decontamination process uses physicochemical information from the poultry litter through sensors installed in the environment, which allows accurate and safe disinfection. Different experimental tests were conducted to construct the system. First, tests related to measuring soil moisture, temperature, and pH were carried out, establishing the range of use and the confidence interval of the measurements. The robot’s navigation uses a back-and-forth motion that parallels the aviary’s longest side because it reduces the number of turns, reducing energy consumption. This task becomes more accessible because of the aviaries’ standardized geometry. Furthermore, the prototype was tested in a real aviary to confirm the innovation, safety, and effectiveness of the proposal. Tests have shown that the UV + ozone combination is sufficient to disinfect this environment.
Kokoelmat
- Avoin saatavuus [34357]