MAMAF-Net: Motion-aware and multi-attention fusion network for stroke diagnosis
Degerli, Aysen; Jäkälä, Pekka; Pajula, Juha; Immonen, Milla; López, Miguel Bordallo (2024-05-02)
Degerli, Aysen
Jäkälä, Pekka
Pajula, Juha
Immonen, Milla
López, Miguel Bordallo
Elsevier
02.05.2024
Degerli, A., Jäkälä, P., Pajula, J., Immonen, M., & López, M. B. (2024). MAMAF-Net: Motion-aware and multi-attention fusion network for stroke diagnosis. Biomedical Signal Processing and Control, 95, 106381. https://doi.org/10.1016/j.bspc.2024.106381
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202405163608
https://urn.fi/URN:NBN:fi:oulu-202405163608
Tiivistelmä
Abstract
Stroke is a major cause of mortality and disability worldwide from which one in four people are in danger of incurring in their lifetime. The pre-hospital stroke assessment plays a vital role in identifying stroke patients accurately to accelerate further examination and treatment in hospitals. Accordingly, the National Institutes of Health Stroke Scale (NIHSS), Cincinnati Pre-hospital Stroke Scale (CPSS) and Face Arm Speed Time (F.A.S.T.) are globally known tests for stroke assessment. However, the validity of these tests is skeptical in the absence of neurologists and access to healthcare may be limited. Therefore, in this study, we propose a motion-aware and multi-attention fusion network (MAMAF-Net) that can detect stroke from multiple examination videos. Contrary to other studies on stroke detection from video analysis, our study for the first time collected a dataset encapsulating transient ischemic attack (TIA), stroke, and healthy controls, and proposes an end-to-end solution using multiple video recordings of each subject. The proposed MAMAF-Net consists of motion-aware modules to sense the mobility of patients, attention modules to fuse the multi-input video data, and 3D convolutional layers to perform diagnosis from the attention-based extracted features. Experimental results over the collected Stroke-data dataset show that the proposed MAMAF-Net achieves a successful detection of stroke with the highest levels of 93.62% sensitivity, 91.19% F1-Score, and 0.7472 Kappa measure in addition to 3.92% increase in the AUC score compared to state-of-the-art deep learning models.
Stroke is a major cause of mortality and disability worldwide from which one in four people are in danger of incurring in their lifetime. The pre-hospital stroke assessment plays a vital role in identifying stroke patients accurately to accelerate further examination and treatment in hospitals. Accordingly, the National Institutes of Health Stroke Scale (NIHSS), Cincinnati Pre-hospital Stroke Scale (CPSS) and Face Arm Speed Time (F.A.S.T.) are globally known tests for stroke assessment. However, the validity of these tests is skeptical in the absence of neurologists and access to healthcare may be limited. Therefore, in this study, we propose a motion-aware and multi-attention fusion network (MAMAF-Net) that can detect stroke from multiple examination videos. Contrary to other studies on stroke detection from video analysis, our study for the first time collected a dataset encapsulating transient ischemic attack (TIA), stroke, and healthy controls, and proposes an end-to-end solution using multiple video recordings of each subject. The proposed MAMAF-Net consists of motion-aware modules to sense the mobility of patients, attention modules to fuse the multi-input video data, and 3D convolutional layers to perform diagnosis from the attention-based extracted features. Experimental results over the collected Stroke-data dataset show that the proposed MAMAF-Net achieves a successful detection of stroke with the highest levels of 93.62% sensitivity, 91.19% F1-Score, and 0.7472 Kappa measure in addition to 3.92% increase in the AUC score compared to state-of-the-art deep learning models.
Kokoelmat
- Avoin saatavuus [34516]