Study on Fat as the Propagation Medium in Optical-Based In-Body Communications
Fuada, Syifaul; Särestöniemi, Mariella; Katz, Marcos; Soderi, Simone; Hämäläinen, Matti (2024-05-05)
Fuada, Syifaul
Särestöniemi, Mariella
Katz, Marcos
Soderi, Simone
Hämäläinen, Matti
Springer
05.05.2024
Fuada, S., Särestöniemi, M., Katz, M., Soderi, S., Hämäläinen, M. (2024). Study on Fat as the Propagation Medium in Optical-Based In-Body Communications. In: Särestöniemi, M., et al. Digital Health and Wireless Solutions. NCDHWS 2024. Communications in Computer and Information Science, vol 2084. Springer, Cham. https://doi.org/10.1007/978-3-031-59091-7_31
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202405143460
https://urn.fi/URN:NBN:fi:oulu-202405143460
Tiivistelmä
Abstract
This paper investigates fat tissue as a medium for communication in implantable/ingestible medical device (IMD) systems based on optical wireless communication (OWC). The findings emphasize the importance of tissue characteristics (temperature in particular) for optimizing OWC performance. This study considered Near-infrared (NIR) light with 810 nm wavelength and fresh porcine samples to mimic the human tissue. The study employs a realistic measurement approach in an ex vivo setting using various porcine samples: pure fat and flesh tissues and samples with different thicknesses. This study also investigates the influence of porcine temperature on the optical communication channels, which are measured by comparing the received optical power at 23 °C and 37 °C. In general, tissue samples at warmer temperatures (37 °C) receive higher optical power than colder samples. The results also demonstrate the superior optical power transmission capabilities of pure fat compared to pure flesh in porcine tissue samples in warm conditions. We also found that porcine with multiple layers of fat (fatty sample) yields higher received optical power than porcine with multiple layers of flesh (muscular). The results of this study provide valuable insights and relevant considerations for OWC-based in-body communication conducted using porcine samples.
This paper investigates fat tissue as a medium for communication in implantable/ingestible medical device (IMD) systems based on optical wireless communication (OWC). The findings emphasize the importance of tissue characteristics (temperature in particular) for optimizing OWC performance. This study considered Near-infrared (NIR) light with 810 nm wavelength and fresh porcine samples to mimic the human tissue. The study employs a realistic measurement approach in an ex vivo setting using various porcine samples: pure fat and flesh tissues and samples with different thicknesses. This study also investigates the influence of porcine temperature on the optical communication channels, which are measured by comparing the received optical power at 23 °C and 37 °C. In general, tissue samples at warmer temperatures (37 °C) receive higher optical power than colder samples. The results also demonstrate the superior optical power transmission capabilities of pure fat compared to pure flesh in porcine tissue samples in warm conditions. We also found that porcine with multiple layers of fat (fatty sample) yields higher received optical power than porcine with multiple layers of flesh (muscular). The results of this study provide valuable insights and relevant considerations for OWC-based in-body communication conducted using porcine samples.
Kokoelmat
- Avoin saatavuus [37837]