Securing Hybrid Wireless Body Area Networks (HyWBAN): Advancements in Semantic Communications and Jamming Techniques
Soderi, Simone; Särestöniemi, Mariella; Fuada, Syifaul; Hämäläinen, Matti; Katz, Marcos; Iinatti, Jari (2024-05-05)
Soderi, Simone
Särestöniemi, Mariella
Fuada, Syifaul
Hämäläinen, Matti
Katz, Marcos
Iinatti, Jari
Springer
05.05.2024
Soderi, S., Särestöniemi, M., Fuada, S., Hämäläinen, M., Katz, M., Iinatti, J. (2024). Securing Hybrid Wireless Body Area Networks (HyWBAN): Advancements in Semantic Communications and Jamming Techniques. In: Särestöniemi, M., et al. Digital Health and Wireless Solutions. NCDHWS 2024. Communications in Computer and Information Science, vol 2084. Springer, Cham. https://doi.org/10.1007/978-3-031-59091-7_24
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202405143458
https://urn.fi/URN:NBN:fi:oulu-202405143458
Tiivistelmä
Abstract
This paper explores novel strategies to strengthen the security of Hybrid Wireless Body Area Networks (HyWBANs), which are essential in smart healthcare and Internet of Things (IoT) applications. Recognizing the vulnerability of HyWBAN to sophisticated cyber-attacks, we propose an innovative combination of semantic communications and jamming receivers. This dual-layered security mechanism protects against unauthorized access and data breaches, particularly in scenarios involving in-body to on-body communication channels. We conduct comprehensive laboratory measurements to understand hybrid (radio and optical) communication propagation through biological tissues. We utilize these insights to refine a dataset for training a Deep Learning (DL) model. These models, in turn, generate semantic concepts linked to cryptographic keys for enhanced data confidentiality and integrity using a jamming receiver. The proposed model significantly reduces energy consumption compared to traditional cryptographic methods, like Elliptic Curve Diffie-Hellman (ECDH), especially when supplemented with jamming. Our approach addresses the primary security concerns and sets the baseline for future secure biomedical communication systems advancements.
This paper explores novel strategies to strengthen the security of Hybrid Wireless Body Area Networks (HyWBANs), which are essential in smart healthcare and Internet of Things (IoT) applications. Recognizing the vulnerability of HyWBAN to sophisticated cyber-attacks, we propose an innovative combination of semantic communications and jamming receivers. This dual-layered security mechanism protects against unauthorized access and data breaches, particularly in scenarios involving in-body to on-body communication channels. We conduct comprehensive laboratory measurements to understand hybrid (radio and optical) communication propagation through biological tissues. We utilize these insights to refine a dataset for training a Deep Learning (DL) model. These models, in turn, generate semantic concepts linked to cryptographic keys for enhanced data confidentiality and integrity using a jamming receiver. The proposed model significantly reduces energy consumption compared to traditional cryptographic methods, like Elliptic Curve Diffie-Hellman (ECDH), especially when supplemented with jamming. Our approach addresses the primary security concerns and sets the baseline for future secure biomedical communication systems advancements.
Kokoelmat
- Avoin saatavuus [38404]