Gravity waves generated by the Hunga Tonga-Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model
Stober, Gunter; Vadas, Sharon L.; Becker, Erich; Liu, Alan; Kozlovsky, Alexander; Janches, Diego; Qiao, Zishun; Krochin, Witali; Shi, Guochun; Yi, Wen; Zeng, Jie; Brown, Peter; Vida, Denis; Hindley, Neil; Jacobi, Christoph; Murphy, Damian; Buriti, Ricardo; Andrioli, Vania; Batista, Paulo; Marino, John; Palo, Scott; Thorsen, Denise; Tsutsumi, Masaki; Gulbrandsen, Njål; Nozawa, Satonori; Lester, Mark; Baumgarten, Kathrin; Kero, Johan; Belova, Evgenia; Mitchell, Nicholas; Moffat-Griffin, Tracy; Li, Na (2024-04-24)
Stober, Gunter
Vadas, Sharon L.
Becker, Erich
Liu, Alan
Kozlovsky, Alexander
Janches, Diego
Qiao, Zishun
Krochin, Witali
Shi, Guochun
Yi, Wen
Zeng, Jie
Brown, Peter
Vida, Denis
Hindley, Neil
Jacobi, Christoph
Murphy, Damian
Buriti, Ricardo
Andrioli, Vania
Batista, Paulo
Marino, John
Palo, Scott
Thorsen, Denise
Tsutsumi, Masaki
Gulbrandsen, Njål
Nozawa, Satonori
Lester, Mark
Baumgarten, Kathrin
Kero, Johan
Belova, Evgenia
Mitchell, Nicholas
Moffat-Griffin, Tracy
Li, Na
European geosciences union
24.04.2024
Stober, G., Vadas, S. L., Becker, E., Liu, A., Kozlovsky, A., Janches, D., Qiao, Z., Krochin, W., Shi, G., Yi, W., Zeng, J., Brown, P., Vida, D., Hindley, N., Jacobi, C., Murphy, D., Buriti, R., Andrioli, V., Batista, P., Marino, J., Palo, S., Thorsen, D., Tsutsumi, M., Gulbrandsen, N., Nozawa, S., Lester, M., Baumgarten, K., Kero, J., Belova, E., Mitchell, N., Moffat-Griffin, T., and Li, N.: Gravity waves generated by the Hunga Tonga–Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model, Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, 2024
https://creativecommons.org/licenses/by/4.0/
© Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/
© Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202405073165
https://urn.fi/URN:NBN:fi:oulu-202405073165
Tiivistelmä
Abstract
The Hunga Tonga–Hunga Ha′apai volcano erupted on 15 January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanogenic gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic general Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward-propagating gravity wave packet with an observed phase speed of 240 ± 5.7 m s−1 and a westward-propagating gravity wave with an observed phase speed of 166.5 ± 6.4 m s−1. We identified these waves in HIAMCM and obtained very good agreement of the observed phase speeds of 239.5 ± 4.3 and 162.2 ± 6.1 m s−1 for the eastward the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption, this affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 min of the nominal value of 15 January 2022 04:15 UTC, and we localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano, confirming our estimates to be realistic.
The Hunga Tonga–Hunga Ha′apai volcano erupted on 15 January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanogenic gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic general Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward-propagating gravity wave packet with an observed phase speed of 240 ± 5.7 m s−1 and a westward-propagating gravity wave with an observed phase speed of 166.5 ± 6.4 m s−1. We identified these waves in HIAMCM and obtained very good agreement of the observed phase speeds of 239.5 ± 4.3 and 162.2 ± 6.1 m s−1 for the eastward the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption, this affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 min of the nominal value of 15 January 2022 04:15 UTC, and we localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano, confirming our estimates to be realistic.
Kokoelmat
- Avoin saatavuus [38618]