Cyber threat hunting using unsupervised federated learning and adversary emulation
Sheikhi, Saeid; Kostakos, Panos (2023-08-28)
Sheikhi, Saeid
Kostakos, Panos
IEEE
28.08.2023
S. Sheikhi and P. Kostakos, "Cyber threat hunting using unsupervised federated learning and adversary emulation," 2023 IEEE International Conference on Cyber Security and Resilience (CSR), Venice, Italy, 2023, pp. 315-320, doi: 10.1109/CSR57506.2023.10224990
https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202404292987
https://urn.fi/URN:NBN:fi:oulu-202404292987
Tiivistelmä
Abstract
The rapid growth of communication networks, coupled with the increasing complexity of cyber threats, necessitates the implementation of proactive measures to protect networks and systems. In this study, we introduce a federated learning-based approach for cyber threat hunting at the endpoint level. The proposed method utilizes the collective intelligence of multiple devices to effectively and confidentially detect attacks on individual machines. A security assessment tool is also developed to emulate the behavior of adversary groups and Advanced Persistent Threat (APT) actors in the network. This tool provides network security experts with the ability to assess their network environment's resilience and aids in generating authentic data derived from diverse threats for use in subsequent stages of the federated learning (FL) model. The results of the experiments demonstrate that the proposed model effectively detects cyber threats on the devices while safeguarding privacy.
The rapid growth of communication networks, coupled with the increasing complexity of cyber threats, necessitates the implementation of proactive measures to protect networks and systems. In this study, we introduce a federated learning-based approach for cyber threat hunting at the endpoint level. The proposed method utilizes the collective intelligence of multiple devices to effectively and confidentially detect attacks on individual machines. A security assessment tool is also developed to emulate the behavior of adversary groups and Advanced Persistent Threat (APT) actors in the network. This tool provides network security experts with the ability to assess their network environment's resilience and aids in generating authentic data derived from diverse threats for use in subsequent stages of the federated learning (FL) model. The results of the experiments demonstrate that the proposed model effectively detects cyber threats on the devices while safeguarding privacy.
Kokoelmat
- Avoin saatavuus [38824]