Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Information Maximization With Distance-Aware Contrastive Learning for Source-Free Cross-Domain Few-Shot Learning

Xu, Huali; Liu, Li; Zhi, Shuaifeng; Fu, Shaojing; Su, Zhuo; Cheng, Ming-Ming; Liu, Yongxiang (2024-03-12)

 
Avaa tiedosto
nbnfioulu-202404262964.pdf (6.204Mt)
Lataukset: 

URL:
https://doi.org/10.1109/TIP.2024.3374222

Xu, Huali
Liu, Li
Zhi, Shuaifeng
Fu, Shaojing
Su, Zhuo
Cheng, Ming-Ming
Liu, Yongxiang
IEEE
12.03.2024

H. Xu et al., "Enhancing Information Maximization With Distance-Aware Contrastive Learning for Source-Free Cross-Domain Few-Shot Learning," in IEEE Transactions on Image Processing, vol. 33, pp. 2058-2073, 2024, doi: 10.1109/TIP.2024.3374222

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/tip.2024.3374222
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202404262964
Tiivistelmä
Abstract

Existing Cross-Domain Few-Shot Learning (CDFSL) methods require access to source domain data to train a model in the pre-training phase. However, due to increasing concerns about data privacy and the desire to reduce data transmission and training costs, it is necessary to develop a CDFSL solution without accessing source data. For this reason, this paper explores a Source-Free CDFSL (SF-CDFSL) problem, in which CDFSL is addressed through the use of existing pretrained models instead of training a model with source data, avoiding accessing source data. However, due to the lack of source data, we face two key challenges: effectively tackling CDFSL with limited labeled target samples, and the impossibility of addressing domain disparities by aligning source and target domain distributions. This paper proposes an Enhanced Information Maximization with Distance-Aware Contrastive Learning (IM-DCL) method to address these challenges. Firstly, we introduce the transductive mechanism for learning the query set. Secondly, information maximization (IM) is explored to map target samples into both individual certainty and global diversity predictions, helping the source model better fit the target data distribution. However, IM fails to learn the decision boundary of the target task. This motivates us to introduce a novel approach called Distance-Aware Contrastive Learning (DCL), in which we consider the entire feature set as both positive and negative sets, akin to Schrödinger’s concept of a dual state. Instead of a rigid separation between positive and negative sets, we employ a weighted distance calculation among features to establish a soft classification of the positive and negative sets for the entire feature set. We explore three types of negative weights to enhance the performance of CDFSL. Furthermore, we address issues related to IM by incorporating contrastive constraints between object features and their corresponding positive and negative sets. Evaluations of the 4 datasets in the BSCD-FSL benchmark indicate that the proposed IM-DCL, without accessing the source domain, demonstrates superiority over existing methods, especially in the distant domain task. Additionally, the ablation study and performance analysis confirmed the ability of IM-DCL to handle SF-CDFSL. The code will be made public at https://github.com/xuhuali-mxj/IM-DCL .
Kokoelmat
  • Avoin saatavuus [38697]

Samankaltainen aineisto

Näytetään aineisto, joilla on samankaltaisia nimekkeitä, tekijöitä tai asiasanoja.

  • Linking learning behavior analytics and learning science concepts : designing a learning analytics dashboard for feedback to support learning regulation 

    Sedrakyan, Gayane; Malmberg, Jonna; Verbert, Katrien; Järvelä, Sanna; Kirschner, Paul A.
    Computers in human behavior (Elsevier, 06.05.2018)
  • Learning enablers, learning outcomes, learning paths, and their relationships in organizational learning and change 

    Haho, Päivi
    Acta Universitatis Ouluensis. C, Technica : 479 (University of Oulu, 31.01.2014)
  • Bridging learning sciences, machine learning and affective computing for understanding cognition and affect in collaborative learning 

    Järvelä, Sanna; Gašević, Dragan; Seppänen, Tapio; Pechenizkiy, Mykola; Kirschner, Paul A.
    British journal of educational technology : 6 (John Wiley & Sons, 06.03.2020)
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen