Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Active Defense Against Voice Conversion Through Generative Adversarial Network

Dong, Shihang; Chen, Beijing; Ma, Kaijie; Zhao, Guoying (2024-02-12)

 
Avaa tiedosto
nbnfioulu-202404262963.pdf (792.7Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LSP.2024.3365034

Dong, Shihang
Chen, Beijing
Ma, Kaijie
Zhao, Guoying
IEEE
12.02.2024

S. Dong, B. Chen, K. Ma and G. Zhao, "Active Defense Against Voice Conversion Through Generative Adversarial Network," in IEEE Signal Processing Letters, vol. 31, pp. 706-710, 2024, doi: 10.1109/LSP.2024.3365034

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/lsp.2024.3365034
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202404262963
Tiivistelmä
Abstract

Active defense is an important approach to counter speech deepfakes that threaten individuals’ privacy, property, and reputation. However, the existing works in this field suffer from issues such as time-consuming and ordinary defense effectiveness. This letter proposes a Generative Adversarial Network (GAN) framework for adversarial attacks as a defense against malicious voice conversion. The proposed method uses a generator to produce adversarial perturbations and adds them to the mel-spectrogram of the target audio to craft adversarial example. In addition, in order to enhance the defense effectiveness, a spectrogram waveform conversion simulation module (SWCSM) is designed to simulate the process of reconstructing waveform from the adversarial mel-spectrogram example and re-extracting mel-spectrogram from the reconstructed waveform. Experiments on four state-of-the-art voice conversion models show that our method achieves the overall best performance among five compared methods in both white-box and black-box scenarios in terms of defense effectiveness and generation time.
Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen