Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Longitudinal Analysis of Real-World Self-report Data

van Berkel, Niels; Shalawadi, Sujay; Evans, Madeleine R.; Visuri, Aku; Hosio, Simo (2023-08-25)

 
Avaa tiedosto
nbnfioulu-202404242932.pdf (429.3Kt)
Lataukset: 

URL:
https://doi.org/10.1007/978-3-031-42286-7_34

van Berkel, Niels
Shalawadi, Sujay
Evans, Madeleine R.
Visuri, Aku
Hosio, Simo
Springer
25.08.2023

van Berkel, N., Shalawadi, S., Evans, M.R., Visuri, A., Hosio, S. (2023). A Longitudinal Analysis of Real-World Self-report Data. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14144. Springer, Cham. https://doi.org/10.1007/978-3-031-42286-7_34

https://rightsstatements.org/vocab/InC/1.0/
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG. This is a post-peer-review, pre-copyedit version of an article published in Human-Computer Interaction – INTERACT 2023: 19th IFIP TC13 International Conference, York, UK, August 28 – September 1, 2023, Proceedings, Part III. The final authenticated version is available online at: https://doi.org/10.1007/978-3-031-42286-7_34
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/978-3-031-42286-7_34
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202404242932
Tiivistelmä
Abstract

While self-report studies are common in Human-Computer Interaction research, few evaluations have assessed their long term use. We present a longitudinal analysis of a web-based workplace application that collects well-being assessments and offers suggestions to improve individual, team, and organisational performance. Our dataset covers 219 users. We assess their first year of application use, focusing on their usage patterns, well-being evaluations, and behaviour towards notifications. Our results highlight that the drop-off in use was the steepest in the first week (-24.2%). However, substantial breaks in usage were common and did not necessarily result in dropout. We found that latency periods of eight days or more predicted a stronger intention to drop out than stay engaged and that reminder notifications did not result in more completed self-reports but significantly prolonged the usage period. Our work strengthens findings related to high drop out rates, but also provides counter-evidence by showing that despite individuals appearing to drop-off in short-term studies, individuals can and do return to self-report applications after extensive breaks. We contribute an analysis of usage behaviour drivers in the area of technology-enabled well-being measurement, responding to the call for longer-term research to extend the growing literature on self-report studies.
Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen