OneLog: towards end-to-end software log anomaly detection
Hashemi, Shayan; Mäntylä, Mika (2024-04-16)
Hashemi, Shayan
Mäntylä, Mika
Springer
16.04.2024
Hashemi, S., Mäntylä, M. OneLog: towards end-to-end software log anomaly detection. Autom Softw Eng 31, 37 (2024). https://doi.org/10.1007/s10515-024-00428-x
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202404232913
https://urn.fi/URN:NBN:fi:oulu-202404232913
Tiivistelmä
Abstract
With the growth of online services, IoT devices, and DevOps-oriented software development, software log anomaly detection is becoming increasingly important. Prior works mainly follow a traditional four-staged architecture (Preprocessor, Parser, Vectorizer, and Classifier). This paper proposes OneLog, which utilizes a single deep neural network instead of multiple separate components. OneLog harnesses convolutional neural network (CNN) at the character level to take digits, numbers, and punctuations, which were removed in prior works, into account alongside the main natural language text. We evaluate our approach in six message- and sequence-based data sets: HDFS, Hadoop, BGL, Thunderbird, Spirit, and Liberty. We experiment with Onelog with single-, multi-, and cross-project setups. Onelog offers state-of-the-art performance in our datasets. Onelog can utilize multi-project datasets simultaneously during training, which suggests our model can generalize between datasets. Multi-project training also improves Onelog performance making it ideal when limited training data is available for an individual project. We also found that cross-project anomaly detection is possible with a single project pair (Liberty and Spirit). Analysis of model internals shows that one log has multiple modes of detecting anomalies and that the model learns manually validated parsing rules for the log messages. We conclude that character-based CNNs are a promising approach toward end-to-end learning in log anomaly detection. They offer good performance and generalization over multiple datasets. We will make our scripts publicly available upon the acceptance of this paper.
With the growth of online services, IoT devices, and DevOps-oriented software development, software log anomaly detection is becoming increasingly important. Prior works mainly follow a traditional four-staged architecture (Preprocessor, Parser, Vectorizer, and Classifier). This paper proposes OneLog, which utilizes a single deep neural network instead of multiple separate components. OneLog harnesses convolutional neural network (CNN) at the character level to take digits, numbers, and punctuations, which were removed in prior works, into account alongside the main natural language text. We evaluate our approach in six message- and sequence-based data sets: HDFS, Hadoop, BGL, Thunderbird, Spirit, and Liberty. We experiment with Onelog with single-, multi-, and cross-project setups. Onelog offers state-of-the-art performance in our datasets. Onelog can utilize multi-project datasets simultaneously during training, which suggests our model can generalize between datasets. Multi-project training also improves Onelog performance making it ideal when limited training data is available for an individual project. We also found that cross-project anomaly detection is possible with a single project pair (Liberty and Spirit). Analysis of model internals shows that one log has multiple modes of detecting anomalies and that the model learns manually validated parsing rules for the log messages. We conclude that character-based CNNs are a promising approach toward end-to-end learning in log anomaly detection. They offer good performance and generalization over multiple datasets. We will make our scripts publicly available upon the acceptance of this paper.
Kokoelmat
- Avoin saatavuus [37957]