Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polarizability models for simulations of finite temperature Raman spectra from machine learning molecular dynamics

Berger, Ethan; Komsa, Hannu-Pekka (2024-04-12)

 
Avaa tiedosto
nbnfioulu-202404232894.pdf (2.871Mt)
Lataukset: 

URL:
https://doi.org/10.1103/PhysRevMaterials.8.043802

Berger, Ethan
Komsa, Hannu-Pekka
American physical society
12.04.2024

Berger, E., & Komsa, H.-P. (2024). Polarizability models for simulations of finite temperature Raman spectra from machine learning molecular dynamics. Physical Review Materials, 8(4), 043802. https://doi.org/10.1103/PhysRevMaterials.8.043802

https://rightsstatements.org/vocab/InC/1.0/
© 2024 American Physical Society
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1103/PhysRevMaterials.8.043802
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202404232894
Tiivistelmä
Abstract

Raman spectroscopy is a powerful and nondestructive method that is widely used to study the vibrational properties of solids or molecules. Simulations of finite-temperature Raman spectra rely on obtaining polarizabilities along molecular-dynamics trajectories, which is computationally highly demanding if calculated from first principles. Machine learning force fields (MLFF) are becoming widely used for accelerating moleculardynamics simulations, but machine-learning models for polarizability are still rare. In this work, we present and compare three polarizability models for obtaining Raman spectra in conjunction with MLFF molecular-dynamics trajectories: (i) a model based on projection to primitive cell eigenmodes, (ii) a bond polarizability model, and (iii) symmetry-adapted Gaussian process regression (SA-GPR) using a smooth overlap of atomic positions. In particular, we investigate the accuracy of these models for different systems and how much training data are required. Models are first applied to boron arsenide, where the first- and second-order Raman spectra are studied as well as the effect of boron isotopes. With MoS2 we study the applicability of the models for highly anisotropic systems and for simulating resonant Raman spectra. Finally, inorganic halide perovskites are studied with a particular interest in simulating the spectra across phase transitions. All models can be used to efficiently predict polarizabilities and are applicable to large systems and long simulation times, and while all three models were found to perform similarly for BAs and MoS2, only SA-GPR offers sufficient flexibility to accurately describe complex anharmonic materials like the perovskites.
Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen