epHero - a tandem-fluorescent probe to track the fate of apoptotic cells during efferocytosis
Singh, Sanjna; Bensalem, Julien; Hein, Leanne K; Casey, Aaron; Mäkinen, Ville-Petteri; Sargeant, Timothy J (2024-04-17)
Singh, Sanjna
Bensalem, Julien
Hein, Leanne K
Casey, Aaron
Mäkinen, Ville-Petteri
Sargeant, Timothy J
Springer
17.04.2024
Singh, S., Bensalem, J., Hein, L.K. et al. epHero – a tandem-fluorescent probe to track the fate of apoptotic cells during efferocytosis. Cell Death Discov. 10, 179 (2024). https://doi.org/10.1038/s41420-024-01952-1
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202404222868
https://urn.fi/URN:NBN:fi:oulu-202404222868
Tiivistelmä
Abstract
The efficient removal of apoptotic cells via efferocytosis is critical for maintaining optimal tissue function. This involves the binding and engulfment of apoptotic cells by phagocytes and the subsequent maturation of the phagosome, culminating in lysosomal fusion and cargo destruction. However, current approaches to measure efferocytosis rely on labelling apoptotic targets with fluorescent dyes, which do not sufficiently distinguish between changes to the engulfment and acidification of apoptotic material. To address this limitation, we have developed a genetically coded ratiometric probe epHero which when expressed in the cytoplasm of target cells, bypasses the need for additional labelling steps. We demonstrate that epHero is a pH-sensitive reporter for efferocytosis and can be used to simultaneously track changes to apoptotic cell uptake and acidification, both in vitro and in mice. As proof-of-principle, we modify extracellular nutrition to show how epHero can distinguish between changes to cargo engulfment and acidification. Thus, tracking efferocytosis with epHero is a simple, cost-effective improvement on conventional techniques.
The efficient removal of apoptotic cells via efferocytosis is critical for maintaining optimal tissue function. This involves the binding and engulfment of apoptotic cells by phagocytes and the subsequent maturation of the phagosome, culminating in lysosomal fusion and cargo destruction. However, current approaches to measure efferocytosis rely on labelling apoptotic targets with fluorescent dyes, which do not sufficiently distinguish between changes to the engulfment and acidification of apoptotic material. To address this limitation, we have developed a genetically coded ratiometric probe epHero which when expressed in the cytoplasm of target cells, bypasses the need for additional labelling steps. We demonstrate that epHero is a pH-sensitive reporter for efferocytosis and can be used to simultaneously track changes to apoptotic cell uptake and acidification, both in vitro and in mice. As proof-of-principle, we modify extracellular nutrition to show how epHero can distinguish between changes to cargo engulfment and acidification. Thus, tracking efferocytosis with epHero is a simple, cost-effective improvement on conventional techniques.
Kokoelmat
- Avoin saatavuus [34545]