Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Editorial: Learning With Fewer Labels in Computer Vision

Liu, Li; Hospedales, Timothy; Lecun, Yann; Long, Mingsheng; Luo, Jiebo; Ouyang, Wanli; Pietikainen, Matti; Tuytelaars, Tinne (2024-02-06)

 
Avaa tiedosto
nbnfioulu-202404102636.pdf (3.007Mt)
Lataukset: 

URL:
https://doi.org/10.1109/TPAMI.2023.3341723

Liu, Li
Hospedales, Timothy
Lecun, Yann
Long, Mingsheng
Luo, Jiebo
Ouyang, Wanli
Pietikainen, Matti
Tuytelaars, Tinne
IEEE
06.02.2024

L. Liu et al., "Editorial: Learning With Fewer Labels in Computer Vision," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 3, pp. 1319-1326, March 2024, doi: 10.1109/TPAMI.2023.3341723

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TPAMI.2023.3341723
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202404102636
Tiivistelmä
Abstract

Undoubtedly, Deep Neural Networks (DNNs), from AlexNet to ResNet to Transformer, have sparked revolutionary advancements in diverse computer vision tasks. The scale of DNNs has grown exponentially due to the rapid development of computational resources. Despite the tremendous success, DNNs typically depend on massive amounts of training data (especially the recent various foundation models) to achieve high performance and are brittle in that their performance can degrade severely with small changes in their operating environment. Generally, collecting massive-scale training datasets is costly or even infeasible, as for certain fields, only very limited or no examples at all can be gathered. Nevertheless, collecting, labeling, and vetting massive amounts of practical training data is certainly difficult and expensive, as it requires the painstaking efforts of experienced human annotators or experts, and in many cases, prohibitively costly or impossible due to some reason, such as privacy, safety or ethic issues.
Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen