6G secure quantum communication: a success probability prediction model
Akbar, Muhammad Azeem; Khan, Arif Ali; Hyrynsalmi, Sami; Khan, Javed Ali (2024-03-29)
Akbar, Muhammad Azeem
Khan, Arif Ali
Hyrynsalmi, Sami
Khan, Javed Ali
Springer
29.03.2024
Akbar, M.A., Khan, A.A., Hyrynsalmi, S. et al. 6G secure quantum communication: a success probability prediction model. Autom Softw Eng 31, 31 (2024). https://doi.org/10.1007/s10515-024-00427-y
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202404042542
https://urn.fi/URN:NBN:fi:oulu-202404042542
Tiivistelmä
Abstract:
The emergence of 6G networks initiates significant transformations in the communication technology landscape. Yet, the melding of quantum computing (QC) with 6G networks although promising an array of benefits, particularly in secure communication. Adapting QC into 6G requires a rigorous focus on numerous critical variables. This study aims to identify key variables in secure quantum communication (SQC) in 6G and develop a model for predicting the success probability of 6G-SQC projects. We identified key 6G-SQC variables from existing literature to achieve these objectives and collected training data by conducting a questionnaire survey. We then analyzed these variables using an optimization model, i.e., Genetic Algorithm (GA), with two different prediction methods the Naïve Bayes Classifier (NBC) and Logistic Regression (LR). The results of success probability prediction models indicate that as the 6G-SQC matures, project success probability significantly increases, and costs are notably reduced. Furthermore, the best fitness rankings for each 6G-SQC project variable determined using NBC and LR indicated a strong positive correlation (rs = 0.895). The t-test results (t = 0.752, p = 0.502 > 0.05) show no significant differences between the rankings calculated using both prediction models (NBC and LR). The results reveal that the developed success probability prediction model, based on 15 identified 6G-SQC project variables, highlights the areas where practitioners need to focus more to facilitate the cost-effective and successful implementation of 6G-SQC projects.
The emergence of 6G networks initiates significant transformations in the communication technology landscape. Yet, the melding of quantum computing (QC) with 6G networks although promising an array of benefits, particularly in secure communication. Adapting QC into 6G requires a rigorous focus on numerous critical variables. This study aims to identify key variables in secure quantum communication (SQC) in 6G and develop a model for predicting the success probability of 6G-SQC projects. We identified key 6G-SQC variables from existing literature to achieve these objectives and collected training data by conducting a questionnaire survey. We then analyzed these variables using an optimization model, i.e., Genetic Algorithm (GA), with two different prediction methods the Naïve Bayes Classifier (NBC) and Logistic Regression (LR). The results of success probability prediction models indicate that as the 6G-SQC matures, project success probability significantly increases, and costs are notably reduced. Furthermore, the best fitness rankings for each 6G-SQC project variable determined using NBC and LR indicated a strong positive correlation (rs = 0.895). The t-test results (t = 0.752, p = 0.502 > 0.05) show no significant differences between the rankings calculated using both prediction models (NBC and LR). The results reveal that the developed success probability prediction model, based on 15 identified 6G-SQC project variables, highlights the areas where practitioners need to focus more to facilitate the cost-effective and successful implementation of 6G-SQC projects.
Kokoelmat
- Avoin saatavuus [38506]