Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Boundary Integral Equation Method for the Complete Electrode Model in Electrical Impedance Tomography with Tests on Experimental Data

Tyni, Teemu; Stinchcombe, Adam R.; Alexakis, Spyros (2024-03-20)

 
Avaa tiedosto
nbnfioulu-202403272464.pdf (26.03Mt)
Lataukset: 

URL:
https://doi.org/10.1137/23M1585696

Tyni, Teemu
Stinchcombe, Adam R.
Alexakis, Spyros
Society for industrial and applied mathematics
20.03.2024

Tyni, T., Stinchcombe, A. R., & Alexakis, S. (2024). A boundary integral equation method for the complete electrode model in electrical impedance tomography with tests on experimental data. SIAM Journal on Imaging Sciences, 17(1), 672–705. https://doi.org/10.1137/23M1585696

https://rightsstatements.org/vocab/InC/1.0/
© by SIAM.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1137/23m1585696
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202403272464
Tiivistelmä
Abstract

We develop a boundary integral equation–based numerical method to solve for the electrostatic potential in two dimensions, inside a medium with piecewise constant conductivity, where the boundary condition is given by the complete electrode model (CEM). The CEM is seen as the most accurate model of the physical setting where electrodes are placed on the surface of an electrically conductive body, currents are injected through the electrodes, and the resulting voltages are measured again on these same electrodes. The integral equation formulation is based on expressing the electrostatic potential as the solution to a finite number of Laplace equations which are coupled through boundary matching conditions. This allows us to re-express the solution in terms of single-layer potentials; the problem is thus recast as a system of integral equations on a finite number of smooth curves. We discuss an adaptive method for the solution of the resulting system of mildly singular integral equations. This forward solver is both fast and accurate. We then present a numerical inverse solver for electrical impedance tomography which uses our forward solver at its core. To demonstrate the applicability of our results we test our numerical methods on an open electrical impedance tomography data set provided by the Finnish Inverse Problems Society.
Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen