Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Federated Learning and Meta Learning: Approaches, Applications, and Directions

Liu, Xiaonan; Deng, Yansha; Nallanathan, Arumugam; Bennis, Mehdi (2023-11-07)

 
Avaa tiedosto
nbnfioulu-202403262433.pdf (16.22Mt)
Lataukset: 

URL:
https://doi.org/10.1109/COMST.2023.3330910

Liu, Xiaonan
Deng, Yansha
Nallanathan, Arumugam
Bennis, Mehdi
IEEE
07.11.2023

X. Liu, Y. Deng, A. Nallanathan and M. Bennis, "Federated Learning and Meta Learning: Approaches, Applications, and Directions," in IEEE Communications Surveys & Tutorials, vol. 26, no. 1, pp. 571-618, Firstquarter 2024, doi: 10.1109/COMST.2023.3330910

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/comst.2023.3330910
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202403262433
Tiivistelmä
Abstract

Over the past few years, significant advancements have been made in the field of machine learning (ML) to address resource management, interference management, autonomy, and decision-making in wireless networks. Traditional ML approaches rely on centralized methods, where data is collected at a central server for training. However, this approach poses a challenge in terms of preserving the data privacy of devices. To address this issue, federated learning (FL) has emerged as an effective solution that allows edge devices to collaboratively train ML models without compromising data privacy. In FL, local datasets are not shared, and the focus is on learning a global model for a specific task involving all devices. However, FL has limitations when it comes to adapting the model to devices with different data distributions. In such cases, meta learning is considered, as it enables the adaptation of learning models to different data distributions using only a few data samples. In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta). Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks. We also analyze the relationships among these learning algorithms and examine their advantages and disadvantages in real-world applications.
Kokoelmat
  • Avoin saatavuus [37688]

Samankaltainen aineisto

Näytetään aineisto, joilla on samankaltaisia nimekkeitä, tekijöitä tai asiasanoja.

  • Linking learning behavior analytics and learning science concepts : designing a learning analytics dashboard for feedback to support learning regulation 

    Sedrakyan, Gayane; Malmberg, Jonna; Verbert, Katrien; Järvelä, Sanna; Kirschner, Paul A.
    Computers in human behavior (Elsevier, 06.05.2018)
  • Learning enablers, learning outcomes, learning paths, and their relationships in organizational learning and change 

    Haho, Päivi
    Acta Universitatis Ouluensis. C, Technica : 479 (University of Oulu, 31.01.2014)
  • Bridging learning sciences, machine learning and affective computing for understanding cognition and affect in collaborative learning 

    Järvelä, Sanna; Gašević, Dragan; Seppänen, Tapio; Pechenizkiy, Mykola; Kirschner, Paul A.
    British journal of educational technology : 6 (John Wiley & Sons, 06.03.2020)
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen