Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Federated Deep Reinforcement Learning-Based Trust Model in Underwater Acoustic Sensor Networks

He, Yu; Han, Guangjie; Li, Aohan; Taleb, Tarik; Wang, Chenyang; Yu, Hao (2023-08-04)

 
Avaa tiedosto
nbnfioulu-202403212364.pdf (2.940Mt)
Lataukset: 

URL:
https://doi.org/10.1109/TMC.2023.3301825

He, Yu
Han, Guangjie
Li, Aohan
Taleb, Tarik
Wang, Chenyang
Yu, Hao
IEEE
04.08.2023

Y. He, G. Han, A. Li, T. Taleb, C. Wang and H. Yu, "A Federated Deep Reinforcement Learning-Based Trust Model in Underwater Acoustic Sensor Networks," in IEEE Transactions on Mobile Computing, vol. 23, no. 5, pp. 5150-5161, May 2024, doi: 10.1109/TMC.2023.3301825.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/tmc.2023.3301825
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202403212364
Tiivistelmä
Abstract

Underwater acoustic sensor networks (UASNs) have been widely deployed in many areas, such as marine ranching, naval applications, and marine disaster warning systems. The security of UASNs, particularly insider threats, is of growing concern. Internal attacks carried out via compromised normal nodes are more damaging and stealthy than external attacks, such as signal stealing, data decryption, and identity forgery. As a security mechanism for internal threat detection based on interaction data, trust models have proven to enhance the security of UASNs. However, traditional trust models lack sufficient scalability when faced with movable underwater devices, heterogeneous network environments, and variable attack patterns. Therefore, in this paper, a novel trust model based on federated deep reinforcement learning is proposed for UASNs. First, the evidence acquisition mechanism, including communication, energy, and data evidence, is improved based on existing ones to better accommodate the topological dynamics of UASNs. Second, acquired trust evidence is fed into the corresponding deep reinforcement learning-based local trust model to accomplish trust prediction and model training. Finally, a federated learning-based update method periodically aggregates and updates the parameters of the local models. The experimental results prove that the proposed scheme exhibits satisfactory performance in terms of improving trust prediction accuracy and energy efficiency.
Kokoelmat
  • Avoin saatavuus [37887]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen