Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prior Information Based Decomposition and Reconstruction Learning for Micro-Expression Recognition

Wei, Jinsheng; Chen, Haoyu; Guanming, L. U.; Yan, Jingjie; Yue, X. I.E.; Zhao, Guoying (2023-10-01)

 
Avaa tiedosto
nbnfioulu-202403192317.pdf (669.6Kt)
Lataukset: 

URL:
https://doi.org/10.1587/transinf.2022EDL8065

Wei, Jinsheng
Chen, Haoyu
Guanming, L. U.
Yan, Jingjie
Yue, X. I.E.
Zhao, Guoying
Institute of Electronics, Information and Communication Engineers
01.10.2023

Wei, J., Chen, H., Lu, G., Yan, J., Xie, Y., & Zhao, G. (2023). Prior information based decomposition and reconstruction learning for micro-expression recognition. IEICE Transactions on Information and Systems, E106.D(10), 1752–1756. https://doi.org/10.1587/transinf.2022EDL8065

https://rightsstatements.org/vocab/InC/1.0/
© 2023 The Institute of Electronics, Information and Communication Engineers
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1587/transinf.2022EDL8065
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202403192317
Tiivistelmä
Abstract

Micro-expression recognition (MER) draws intensive research interest as micro-expressions (MEs) can infer genuine emotions. Prior information can guide the model to learn discriminative ME features effectively. However, most works focus on researching the general models with a stronger representation ability to adaptively aggregate ME movement information in a holistic way, which may ignore the prior information and properties of MEs. To solve this issue, driven by the prior information that the category of ME can be inferred by the relationship between the actions of facial different components, this work designs a novel model that can conform to this prior information and learn ME movement features in an interpretable way. Specifically, this paper proposes a Decomposition and Reconstruction-based Graph Representation Learning (DeRe-GRL) model to efectively learn high-level ME features. DeRe-GRL includes two modules: Action Decomposition Module (ADM) and Relation Reconstruction Module (RRM), where ADM learns action features of facial key components and RRM explores the relationship between these action features. Based on facial key components, ADM divides the geometric movement features extracted by the graph model-based backbone into several sub-features, and learns the map matrix to map these sub-features into multiple action features; then, RRM learns weights to weight all action features to build the relationship between action features. The experimental results demonstrate the effectiveness of the proposed modules, and the proposed method achieves competitive performance.
Kokoelmat
  • Avoin saatavuus [37606]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen