FortisEDoS: A Deep Transfer Learning-empowered Economical Denial of Sustainability Detection Framework for Cloud-Native Network Slicing
Benzaïd, Chafika; Taleb, Tarik; Sami, Ashkan; Hireche, Othmane (2023-09-25)
Benzaïd, Chafika
Taleb, Tarik
Sami, Ashkan
Hireche, Othmane
IEEE
25.09.2023
C. Benzaïd, T. Taleb, A. Sami and O. Hireche, "FortisEDoS: A Deep Transfer Learning-Empowered Economical Denial of Sustainability Detection Framework for Cloud-Native Network Slicing," in IEEE Transactions on Dependable and Secure Computing, vol. 21, no. 4, pp. 2818-2835, July-Aug. 2024, doi: 10.1109/TDSC.2023.3318606.
https://creativecommons.org/licenses/by/4.0/
© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202403192301
https://urn.fi/URN:NBN:fi:oulu-202403192301
Tiivistelmä
Abstract
Network slicing is envisaged as the key to unlocking revenue growth in 5 G and beyond (B5G) networks. However, the dynamic nature of network slicing and the growing sophistication of DDoS attacks rises the menace of reshaping a stealthy DDoS into an Economical Denial of Sustainability (EDoS) attack. EDoS aims at incurring economic damages to service provider due to the increased elastic use of resources. Motivated by the limitations of existing defense solutions, we propose FortisEDoS, a novel framework that aims at enabling elastic B5G services that are impervious to EDoS attacks. FortisEDoS integrates a new deep learning-powered DDoS anomaly detection model, dubbed CG-GRU, that capitalizes on the capabilities of emerging graph and recurrent neural networks in capturing spatio-temporal correlations to accurately discriminate malicious behavior. Furthermore, FortisEDoS leverages transfer learning to effectively defeat EDoS attacks in newly deployed slices by exploiting the knowledge learned in a previously deployed slice. The experimental results demonstrate the superiority of CG-GRU in achieving higher detection performance of more than 92% with lower computation complexity. They show also that transfer learning can yield an attack detection sensitivity of above 91%, while accelerating the training process by at least 61%. Further analysis shows that FortisEDoS exhibits intuitive explainability of its decisions, fostering trust in deep learning-assisted systems.
Network slicing is envisaged as the key to unlocking revenue growth in 5 G and beyond (B5G) networks. However, the dynamic nature of network slicing and the growing sophistication of DDoS attacks rises the menace of reshaping a stealthy DDoS into an Economical Denial of Sustainability (EDoS) attack. EDoS aims at incurring economic damages to service provider due to the increased elastic use of resources. Motivated by the limitations of existing defense solutions, we propose FortisEDoS, a novel framework that aims at enabling elastic B5G services that are impervious to EDoS attacks. FortisEDoS integrates a new deep learning-powered DDoS anomaly detection model, dubbed CG-GRU, that capitalizes on the capabilities of emerging graph and recurrent neural networks in capturing spatio-temporal correlations to accurately discriminate malicious behavior. Furthermore, FortisEDoS leverages transfer learning to effectively defeat EDoS attacks in newly deployed slices by exploiting the knowledge learned in a previously deployed slice. The experimental results demonstrate the superiority of CG-GRU in achieving higher detection performance of more than 92% with lower computation complexity. They show also that transfer learning can yield an attack detection sensitivity of above 91%, while accelerating the training process by at least 61%. Further analysis shows that FortisEDoS exhibits intuitive explainability of its decisions, fostering trust in deep learning-assisted systems.
Kokoelmat
- Avoin saatavuus [34357]