Screen-Printed Composite LiFePO4-LLZO Cathodes Towards Solid-State Li-ion Batteries
Molaiyan, Palanivel; Valikangas, Juho; Sliz, Rafal; Ramteke, D. D.; Hu, Tao; Paolella, Andrea; Fabritius, Tapio; Lassi, Ulla (2024-03-11)
Molaiyan, Palanivel
Valikangas, Juho
Sliz, Rafal
Ramteke, D. D.
Hu, Tao
Paolella, Andrea
Fabritius, Tapio
Lassi, Ulla
Wiley-VCH Verlag
11.03.2024
P. Molaiyan, J. Valikangas, R. Sliz, D. D. Ramteke, T. Hu, A. Paolella, T. Fabritius, U. Lassi, ChemElectroChem 2024, e202400051. https://doi.org/10.1002/celc.202400051
https://creativecommons.org/licenses/by/4.0/
© 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0/
© 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202403182279
https://urn.fi/URN:NBN:fi:oulu-202403182279
Tiivistelmä
Abstract
LiFePO4 (LFP) is widely used as cathode material for its low cost, high safety, and good thermal properties. It is one of the most exploited cathode materials for commercial Li-ion batteries (LIBs). Herein, we present a screen-printing method to prepare a LFP composite cathode, and a rational combination of the typical composite solid electrolytes (CSE) consisting of polyethylene oxide (PEO)/Li-salt (LiTFSi) electrolyte with ceramic filler (LLZO or Li6.4La3Zr1.4Ta0.6O12 (LLZTO)) has been successfully demonstrated for SSB. The prepared CSE offers: i) a promising ionic conductivity (0.425 mS cm−1 at 60 °C), ii) a wide electrochemical window (>4.6 V), iii) a high Li-ion transference number (tLi+=0.44), iv) a good interfacial compatibility with the electrode, v) a good thermal stability, and vi) a high chemical stability toward Li metal anode. The Li/CSE/Li symmetric cells can be cycled for more than 1000 h without Li-dendrites growth at a current density of 0.2 mA cm−2. The final cell screen-printed LFP composite cathode (LFP+LLZO)//Li metal displays a high reversible specific capacity of 140 mAh g−1 (0.1 C) and 50 mAh g−1 (0.5 C) after 1st and 500th cycles.
LiFePO4 (LFP) is widely used as cathode material for its low cost, high safety, and good thermal properties. It is one of the most exploited cathode materials for commercial Li-ion batteries (LIBs). Herein, we present a screen-printing method to prepare a LFP composite cathode, and a rational combination of the typical composite solid electrolytes (CSE) consisting of polyethylene oxide (PEO)/Li-salt (LiTFSi) electrolyte with ceramic filler (LLZO or Li6.4La3Zr1.4Ta0.6O12 (LLZTO)) has been successfully demonstrated for SSB. The prepared CSE offers: i) a promising ionic conductivity (0.425 mS cm−1 at 60 °C), ii) a wide electrochemical window (>4.6 V), iii) a high Li-ion transference number (tLi+=0.44), iv) a good interfacial compatibility with the electrode, v) a good thermal stability, and vi) a high chemical stability toward Li metal anode. The Li/CSE/Li symmetric cells can be cycled for more than 1000 h without Li-dendrites growth at a current density of 0.2 mA cm−2. The final cell screen-printed LFP composite cathode (LFP+LLZO)//Li metal displays a high reversible specific capacity of 140 mAh g−1 (0.1 C) and 50 mAh g−1 (0.5 C) after 1st and 500th cycles.
Kokoelmat
- Avoin saatavuus [34589]