Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cross-Domain Few-Shot Classification Via Inter-Source Stylization

Xu, Huali; Zhi, Shuaifeng; Liu, Li (2023-09-11)

 
Avaa tiedosto
nbnfioulu-202403152266.pdf (4.898Mt)
Lataukset: 

URL:
https://doi.org/10.1109/ICIP49359.2023.10222701

Xu, Huali
Zhi, Shuaifeng
Liu, Li
IEEE
11.09.2023

H. Xu, S. Zhi and L. Liu, "Cross-Domain Few-Shot Classification Via Inter-Source Stylization," 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 2023, pp. 565-569, doi: 10.1109/ICIP49359.2023.10222701.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/icip49359.2023.10222701
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202403152266
Tiivistelmä
Abstract

The goal of Cross-Domain Few-Shot Classification (CDFSC) is to accurately classify a target dataset with limited labelled data by exploiting the knowledge of a richly labelled auxiliary dataset, despite the differences between the domains of the two datasets. Some existing approaches require labelled samples from multiple domains for model training. However, these methods fail when the sample labels are scarce. To overcome this challenge, this paper proposes a solution that makes use of multiple source domains without the need for additional labeling costs. Specifically, one of the source domains is completely tagged, while the others are untagged. An Inter-Source Stylization Network (ISSNet) is then introduced to enhance stylisation across multiple source domains, enriching data distribution and model’s generalization capabilities. Experiments on 8 target datasets show that ISSNet leverages unlabelled data from multiple source data and significantly reduces the negative impact of domain gaps on classification performance compared to several baseline methods.
Kokoelmat
  • Avoin saatavuus [37606]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen