Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance Analysis with Deep Learning Assay for Cooperative UAV-Borne IRS NOMA Networks under Non-Ideal System Imperfections

Singh, Chandan Kumar; Upadhyay, Prabhat K.; Lehtomäki, Janne; Juntti, Markku (2023-08-31)

 
Avaa tiedosto
nbnfioulu-202403152241.pdf (2.869Mt)
Lataukset: 

URL:
https://doi.org/10.1109/TVT.2023.3309619

Singh, Chandan Kumar
Upadhyay, Prabhat K.
Lehtomäki, Janne
Juntti, Markku
IEEE
31.08.2023

C. K. Singh, P. K. Upadhyay, J. Lehtomäki and M. Juntti, "Performance Analysis With Deep Learning Assay for Cooperative UAV-Borne IRS NOMA Networks Under Non-Ideal System Imperfections," in IEEE Transactions on Vehicular Technology, vol. 73, no. 1, pp. 1065-1083, Jan. 2024, doi: 10.1109/TVT.2023.3309619

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TVT.2023.3309619
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202403152241
Tiivistelmä
Abstract

Internet of Things (IoT) inspired wireless networks foresee intelligent reflecting surfaces (IRSs) and non-orthogonal multiple access (NOMA) as promising techniques to boost the spectral and energy efficiency, while unmanned aerial vehicles (UAVs) as fast and flexible entity for enhancing the wireless connectivity. In this regard, we study a cooperative UAV-borne IRS system employing NOMA transmissions to serve multiple users on the ground. We take into account the impacts of residual hardware impairments (HIs) in devices and imperfect successive interference cancellation (I-SIC) in NOMA, which are inevitable in practical system implementation. We analyze the system performance by deriving the closed-form expressions of outage probability (OP) and ergodic rate of users over the line-of-sight (LoS) Rician fading channels for the aerial IRS links and non-LoS Rayleigh fading for the terrestrial direct links. We further pursue asymptotic analysis for both OP and ergodic rate to reveal useful insights on the high signal-to-noise ratio (SNR) slope and achievable diversity order. Also, we evaluate the system throughput under the delay-limited and delay-tolerant transmission modes. Above all, aiming toward real-time IoT applications of UAV-IRS empowered NOMA system, we present a deep neural network (DNN) framework for OP and ergodic rate predictions with a short execution time under the dynamic stochastic environment. Our results validate the theoretical analyses and accentuate the performance advantages of the proposed UAV-borne IRS NOMA system over the conventional orthogonal multiple access (OMA) equivalent system.
Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen