QoS-Aware Service Prediction and Orchestration in Cloud-Network Integrated Beyond 5G
Farhoudi, Mohammad; Shokrnezhad, Masoud; Taleb, Tarik (2024-02-26)
Farhoudi, Mohammad
Shokrnezhad, Masoud
Taleb, Tarik
IEEE
26.02.2024
M. Farhoudi, M. Shokrnezhad and T. Taleb, "QoS-Aware Service Prediction and Orchestration in Cloud-Network Integrated Beyond 5G," GLOBECOM 2023 - 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023, pp. 369-374, doi: 10.1109/GLOBECOM54140.2023.10436905
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202402292047
https://urn.fi/URN:NBN:fi:oulu-202402292047
Tiivistelmä
Abstract
Novel applications such as the Metaverse have high-lighted the potential of beyond 5G networks, which necessitate ultra-low latency communications and massive broadband connections. Moreover, the burgeoning demand for such services with ever-fluctuating users has engendered a need for heightened service continuity consideration in B5G. To enable these services, the edge-cloud paradigm is a potential solution to harness cloud capacity and effectively manage users in real time as they move across the network. However, edge-cloud networks confront a multitude of limitations, including networking and computing resources that must be collectively managed to unlock their full potential. This paper addresses the joint problem of service placement and resource allocation in a network-cloud integrated environment while considering capacity constraints, dynamic users, and end-to-end delays. We present a non-linear programming model that formulates the optimization problem with the aiming objective of minimizing overall cost while enhancing latency. Next, to address the problem, we introduce a DDQL-based technique using RNNs to predict user behavior, empowered by a water-filling-based algorithm for service placement. The proposed framework adeptly accommodates the dynamic nature of users, the placement of services that mandate ultra-low latency in B5G, and service continuity when users migrate from one location to another. Simulation results show that our solution provides timely responses that optimize the network's potential, offering a scalable and efficient placement.
Novel applications such as the Metaverse have high-lighted the potential of beyond 5G networks, which necessitate ultra-low latency communications and massive broadband connections. Moreover, the burgeoning demand for such services with ever-fluctuating users has engendered a need for heightened service continuity consideration in B5G. To enable these services, the edge-cloud paradigm is a potential solution to harness cloud capacity and effectively manage users in real time as they move across the network. However, edge-cloud networks confront a multitude of limitations, including networking and computing resources that must be collectively managed to unlock their full potential. This paper addresses the joint problem of service placement and resource allocation in a network-cloud integrated environment while considering capacity constraints, dynamic users, and end-to-end delays. We present a non-linear programming model that formulates the optimization problem with the aiming objective of minimizing overall cost while enhancing latency. Next, to address the problem, we introduce a DDQL-based technique using RNNs to predict user behavior, empowered by a water-filling-based algorithm for service placement. The proposed framework adeptly accommodates the dynamic nature of users, the placement of services that mandate ultra-low latency in B5G, and service continuity when users migrate from one location to another. Simulation results show that our solution provides timely responses that optimize the network's potential, offering a scalable and efficient placement.
Kokoelmat
- Avoin saatavuus [34150]