RIC-CNN: Rotation-Invariant Coordinate Convolutional Neural Network
Mo, Hanlin; Zhao, Guoying (2023-09-29)
Mo, Hanlin
Zhao, Guoying
Elsevier
29.09.2023
Mo, H., & Zhao, G. (2024). RIC-CNN: Rotation-invariant coordinate convolutional neural network. Pattern Recognition, 146, 109994. https://doi.org/10.1016/j.patcog.2023.109994
https://creativecommons.org/licenses/by/4.0/
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202402071633
https://urn.fi/URN:NBN:fi:oulu-202402071633
Tiivistelmä
Abstract
Due to the lack of rotation invariance in traditional convolution operations, even acting a slight rotation on the input can severely degrade the performance of Convolutional Neural Networks (CNNs). To address this, we propose a Rotation-Invariant Coordinate Convolution (RIC-C), which achieves natural invariance to arbitrary rotations around the input center without additional trainable parameters or data augmentation. We first evaluate the rotational invariance of RIC-C using the MNIST dataset and compare its performance with most previous rotation-invariant CNN models. RIC-C achieves state-of-the-art classification on the MNIST-rot test set without data augmentation and with lower computational costs. Then, the interchangeability of RIC-C with traditional convolution operations is demonstrated by seamlessly integrating it into common CNN models like VGG, ResNet, and DenseNet. We conduct remote sensing image classification on the NWPU VHR-10, MTARSI and AID datasets and patch matching experiments on the UBC benchmark dataset, showing that RIC-C significantly enhances the performance of CNN models across different applications, especially when training data is limited. Our codes can be downloaded from https://github.com/HanlinMo/Rotation-Invariant-Coordinate-Convolutional-Neural-Network.git.
Due to the lack of rotation invariance in traditional convolution operations, even acting a slight rotation on the input can severely degrade the performance of Convolutional Neural Networks (CNNs). To address this, we propose a Rotation-Invariant Coordinate Convolution (RIC-C), which achieves natural invariance to arbitrary rotations around the input center without additional trainable parameters or data augmentation. We first evaluate the rotational invariance of RIC-C using the MNIST dataset and compare its performance with most previous rotation-invariant CNN models. RIC-C achieves state-of-the-art classification on the MNIST-rot test set without data augmentation and with lower computational costs. Then, the interchangeability of RIC-C with traditional convolution operations is demonstrated by seamlessly integrating it into common CNN models like VGG, ResNet, and DenseNet. We conduct remote sensing image classification on the NWPU VHR-10, MTARSI and AID datasets and patch matching experiments on the UBC benchmark dataset, showing that RIC-C significantly enhances the performance of CNN models across different applications, especially when training data is limited. Our codes can be downloaded from https://github.com/HanlinMo/Rotation-Invariant-Coordinate-Convolutional-Neural-Network.git.
Kokoelmat
- Avoin saatavuus [38865]