Analysis of alkali-activated mineral wool-slag binders: evaluating the differences between one-part and two-part variations
Adesanya, Elijah; Dabbebi, Rawia; Rößler, Christine; Pavlin, Majda; Li, Zhenming; Luukkonen, Tero; Yliniemi, Juho; Illikainen, Mirja (2024-01-26)
Adesanya, Elijah
Dabbebi, Rawia
Rößler, Christine
Pavlin, Majda
Li, Zhenming
Luukkonen, Tero
Yliniemi, Juho
Illikainen, Mirja
Springer
26.01.2024
Adesanya, E., Dabbebi, R., Rößler, C. et al. Analysis of alkali-activated mineral wool-slag binders: evaluating the differences between one-part and two-part variations. J Mater Cycles Waste Manag 26, 1001–1011 (2024). https://doi.org/10.1007/s10163-023-01878-3
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202402061606
https://urn.fi/URN:NBN:fi:oulu-202402061606
Tiivistelmä
Abstract
Two synthesis pathways (one- and two-part) in alkali-activated binders were compared using ground granulated blast furnace slag (GGBFS), mineral wool (MW) activated using dry and liquid alkali activators with similar Na2O/SiO2 modulus. The effect of activator type on reaction kinetics, strength development, setting times, and durability shows that one-part synthesis does not only improve early strength, but also provide better durability properties. While the highest compressive strength (56 MPa, 90 days) was achieved for the one-part mix (DM), the reaction products (presence of Mg–Al layered double hydroxide and C–S–H-like phases) observed for both mortar mixes were similar. The DM mortars showed better resistance to sulfate attack than two-part mix (WM) mortars and sets faster. The results highlight the significance of the one-part pathways in the synthesis of alkali-activated materials.
Two synthesis pathways (one- and two-part) in alkali-activated binders were compared using ground granulated blast furnace slag (GGBFS), mineral wool (MW) activated using dry and liquid alkali activators with similar Na2O/SiO2 modulus. The effect of activator type on reaction kinetics, strength development, setting times, and durability shows that one-part synthesis does not only improve early strength, but also provide better durability properties. While the highest compressive strength (56 MPa, 90 days) was achieved for the one-part mix (DM), the reaction products (presence of Mg–Al layered double hydroxide and C–S–H-like phases) observed for both mortar mixes were similar. The DM mortars showed better resistance to sulfate attack than two-part mix (WM) mortars and sets faster. The results highlight the significance of the one-part pathways in the synthesis of alkali-activated materials.
Kokoelmat
- Avoin saatavuus [38841]