Activating two-dimensional semiconductors for photocatalysis: a cross-dimensional strategy
Botella, R; Cao, W; Celis, J; Fernández-Catalá, J; Greco, R; Lu, L; Pankratova, V; Temerov, F (2024-01-04)
Botella, R
Cao, W
Celis, J
Fernández-Catalá, J
Greco, R
Lu, L
Pankratova, V
Temerov, F
Institute of physics publishing
04.01.2024
R Botella et al 2024 J. Phys.: Condens. Matter 36 141501, DOI: 10.1088/1361-648X/ad14c8
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202402051583
https://urn.fi/URN:NBN:fi:oulu-202402051583
Tiivistelmä
Abstract
The emerging two-dimensional (2D) semiconductors substantially extend materials bases for versatile applications such as semiconductor photocatalysis demanding semiconductive matrices and large surface areas. The dimensionality, while endowing 2D semiconductors the unique properties to host photocatalytic functionality of pollutant removal and hydrogen evolution, hurdles the activation paths to form heterogenous photocatalysts where the photochemical processes are normally superior over these on the mono-compositional counterparts. In this perspective, we present a cross-dimensional strategy to employ the nD (n = 0–2) clusters or nanomaterials as activation partners to boost the photocatalytic activities of the 2D semiconductors. The formation principles of heterogenous photocatalysts are illustrated specifically for the 2D matrices, followed by selection criteria of them among the vast 2D database. The computer investigations are illustrated in the density functional theory route and machine learning benefitted from the vast samples in the 2D library. Synthetic realizations and characterizations of the 2D heterogenous systems are introduced with an emphasis on chemical methods and advanced techniques to understand materials and mechanistic studies. The perspective outlooks cross-dimensional activation strategies of the 2D materials for other applications such as CO2 removal, and materials matrices in other dimensions which may inspire incoming research within these fields.
The emerging two-dimensional (2D) semiconductors substantially extend materials bases for versatile applications such as semiconductor photocatalysis demanding semiconductive matrices and large surface areas. The dimensionality, while endowing 2D semiconductors the unique properties to host photocatalytic functionality of pollutant removal and hydrogen evolution, hurdles the activation paths to form heterogenous photocatalysts where the photochemical processes are normally superior over these on the mono-compositional counterparts. In this perspective, we present a cross-dimensional strategy to employ the nD (n = 0–2) clusters or nanomaterials as activation partners to boost the photocatalytic activities of the 2D semiconductors. The formation principles of heterogenous photocatalysts are illustrated specifically for the 2D matrices, followed by selection criteria of them among the vast 2D database. The computer investigations are illustrated in the density functional theory route and machine learning benefitted from the vast samples in the 2D library. Synthetic realizations and characterizations of the 2D heterogenous systems are introduced with an emphasis on chemical methods and advanced techniques to understand materials and mechanistic studies. The perspective outlooks cross-dimensional activation strategies of the 2D materials for other applications such as CO2 removal, and materials matrices in other dimensions which may inspire incoming research within these fields.
Kokoelmat
- Avoin saatavuus [38841]