Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

IoT-Inspired Cooperative Spectrum Sharing With Energy Harvesting in UAV-Assisted NOMA Networks: Deep Learning Assessment

Kumar, Ratnesh; Singh, Chandan Kumar; Upadhyay, Prabhat Kumar; Salhab, Anas M.; Nasir, Ali Arshad; Masood, Mudassir (2023-08-10)

 
Avaa tiedosto
nbnfioulu-202401181347.pdf (1.337Mt)
Lataukset: 

URL:
https://doi.org/10.1109/JIOT.2023.3304126

Kumar, Ratnesh
Singh, Chandan Kumar
Upadhyay, Prabhat Kumar
Salhab, Anas M.
Nasir, Ali Arshad
Masood, Mudassir
IEEE
10.08.2023

R. Kumar, C. K. Singh, P. K. Upadhyay, A. M. Salhab, A. A. Nasir and M. Masood, "IoT-Inspired Cooperative Spectrum Sharing With Energy Harvesting in UAV-Assisted NOMA Networks: Deep Learning Assessment," in IEEE Internet of Things Journal, vol. 10, no. 24, pp. 22182-22196, 15 Dec.15, 2023, doi: 10.1109/JIOT.2023.3304126.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/JIOT.2023.3304126
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202401181347
Tiivistelmä
Abstract

Energy and spectral efficiency of Internet of Things (IoT) networks can be improved by integrating energy harvesting (EH), cognitive radio, and nonorthogonal multiple access (NOMA) techniques, while unmanned aerial vehicles (UAVs), on the other hand, are a quick and adaptable entity for improving the coverage performance. In this article, we assess the performance of a UAV-assisted overlay cognitive NOMA (OC-NOMA) system by employing an EH-based IoT-inspired cooperative spectrum sharing transmission (I-CSST) scheme. Herein, an energy-constrained UAV-borne secondary node harvests radio-frequency energy from the primary source and uses it to send both its own information signal and the primary information signal using the NOMA approach. We consider the impact of the imperfect successive interference cancellation in NOMA and the distortion noises caused by hardware impairments (HIs) in signal processing, which are unavoidable in real-world systems. We obtain the complicated expressions of outage probability (OP) for primary and secondary IoT networks using the I-CSST scheme under heterogeneous Rician and Nakagami- m fading channels. We continue to investigate asymptotic analysis for OP in order to gain insightful knowledge on the high signal-to-noise ratio (SNR) slope and practicable diversity order. We also assess the system throughput and energy efficiency for the considered OC-NOMA system. Our results demonstrate the benefits of the suggested I-CSST scheme over the benchmark primary direct transmission and orthogonal multiple access schemes. We create a deep neural network (DNN) architecture for real-time OP prediction in order to combat the complications in model-based approaches.
Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen