Digital twin-driven robust bi-level optimisation model for COVID-19 medical waste location-transport under circular economy
Cao, Cejun; Liu, Jiahui; Liu, Yang; Wang, Haoheng; Liu, Mengjie (2023-11-15)
Cao, Cejun
Liu, Jiahui
Liu, Yang
Wang, Haoheng
Liu, Mengjie
Elsevier
15.11.2023
Cejun Cao, Jiahui Liu, Yang Liu, Haoheng Wang, Mengjie Liu, Digital twin-driven robust bi-level optimisation model for COVID-19 medical waste location-transport under circular economy, Computers & Industrial Engineering, Volume 186, 2023, 109107, ISSN 0360-8352, https://doi.org/10.1016/j.cie.2023.109107
https://creativecommons.org/licenses/by/4.0/
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202401181340
https://urn.fi/URN:NBN:fi:oulu-202401181340
Tiivistelmä
Abstract
COVID-19 medical waste collection-transport system, including the location of the related facilities, transport, and disposal, is a critical component in the circular economy. To promote the circularity of the waste management system and mitigate the spread of novel coronavirus, how to optimise COVID-19 medical waste location-transport strategies remains an open but urgent issue. In this paper, a novel digital twin-driven conceptual framework is proposed to improve the strategic decision on the location of temporary disposal centres and, subsequently, the operational decision on the transport of COVID-19 medical waste in the presence of hierarchical relationships amongst stakeholders, circular economy, environmental regulations, service level, and uncertainty in infection probability. The polyhedral uncertainty set is introduced to characterise stochastic infection probability. Digital twin technology is further used to estimate the upper and lower bound of the uncertainty set. Such a problem is formulated as a digital twin-driven robust bi-level mixed-integer programming model to minimise total infection risks on the upper level and total costs on the lower level. A hybrid solution strategy is designed to combine dual theory, Karush-Kuhn-Tucker (KKT) conditions, and a branch-and-bound approach. Finally, a real case study from Maharashtra in India is presented to evaluate the proposed model. Results demonstrate that the solution strategy performs well for such a complex problem because the CPU time required to conduct all experiments is less than one hour. Under a given uncertainty level of 36 and perturbation ratio of 20%, a regional transport strategy is preferred from generation points to transfer points, while a cross-regional one is usually implemented from transfer points to disposal centres. It is of significance to determine the bound of available temporary disposal centres. Using digital technology (e.g., digital twin) to accurately estimate the amount of COVID-19 medical waste is beneficial for controlling the pandemic. Reducing infection risks relative to cost is the prioritised goal in cleaning up COVID-19 medical waste within a relatively long period.
COVID-19 medical waste collection-transport system, including the location of the related facilities, transport, and disposal, is a critical component in the circular economy. To promote the circularity of the waste management system and mitigate the spread of novel coronavirus, how to optimise COVID-19 medical waste location-transport strategies remains an open but urgent issue. In this paper, a novel digital twin-driven conceptual framework is proposed to improve the strategic decision on the location of temporary disposal centres and, subsequently, the operational decision on the transport of COVID-19 medical waste in the presence of hierarchical relationships amongst stakeholders, circular economy, environmental regulations, service level, and uncertainty in infection probability. The polyhedral uncertainty set is introduced to characterise stochastic infection probability. Digital twin technology is further used to estimate the upper and lower bound of the uncertainty set. Such a problem is formulated as a digital twin-driven robust bi-level mixed-integer programming model to minimise total infection risks on the upper level and total costs on the lower level. A hybrid solution strategy is designed to combine dual theory, Karush-Kuhn-Tucker (KKT) conditions, and a branch-and-bound approach. Finally, a real case study from Maharashtra in India is presented to evaluate the proposed model. Results demonstrate that the solution strategy performs well for such a complex problem because the CPU time required to conduct all experiments is less than one hour. Under a given uncertainty level of 36 and perturbation ratio of 20%, a regional transport strategy is preferred from generation points to transfer points, while a cross-regional one is usually implemented from transfer points to disposal centres. It is of significance to determine the bound of available temporary disposal centres. Using digital technology (e.g., digital twin) to accurately estimate the amount of COVID-19 medical waste is beneficial for controlling the pandemic. Reducing infection risks relative to cost is the prioritised goal in cleaning up COVID-19 medical waste within a relatively long period.
Kokoelmat
- Avoin saatavuus [38840]