Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Peer-to-Peer Federated Learning Based Anomaly Detection for Open Radio Access Networks

Attanayaka, Dinaj; Porambage, Pawani; Liyanage, Madhusanka; Ylianttila, Mika (2023-10-23)

 
Avaa tiedosto
nbnfioulu-202401171284.pdf (1.439Mt)
Lataukset: 

URL:
https://doi.org/10.1109/ICC45041.2023.10278993

Attanayaka, Dinaj
Porambage, Pawani
Liyanage, Madhusanka
Ylianttila, Mika
IEEE
23.10.2023

D. Attanayaka, P. Porambage, M. Liyanage and M. Ylianttila, "Peer-to-Peer Federated Learning Based Anomaly Detection for Open Radio Access Networks," ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023, pp. 5464-5470, doi: 10.1109/ICC45041.2023.10278993

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICC45041.2023.10278993
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202401171284
Tiivistelmä
Abstract

Open radio access network (O-RAN) has been recognized as a revolutionized architecture to support the multi-class wireless services required in fifth-generation (5G) and beyond 5G networks. The openness and the distributed nature of the O-RAN architecture have created new forms of threat surfaces than the conventional RAN architecture and require complex anomaly detection mechanisms. Moreover, with the introduction of RAN intelligent controllers (RICs), it is possible to utilize advanced Artificial Intelligence (AI)/ Machine Learning (ML) algorithms based on closed control loops to detect anomalies in a data-driven manner. In this paper, we particularly investigate the use of Federated Learning (FL) for anomaly detection in the O-RAN architecture, which can further preserve data privacy. We propose a peer-to-peer (P2P) FL-based anomaly detection mechanism for the O-RAN architecture and provide a comprehensive analysis of four variants of P2P FL techniques. Moreover, we simulate the proposed models using the UNSW-NB15 dataset.
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen