Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Federated Learning Approach for Improving Security in Network Slicing

Wijethilaka, Shalitha; Liyanage, Madhusanka (2023-01-11)

 
Avaa tiedosto
nbnfioulu-202401171281.pdf (764.5Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOBECOM48099.2022.10001190

Wijethilaka, Shalitha
Liyanage, Madhusanka
IEEE
11.01.2023

S. Wijethilaka and M. Liyanage, "A Federated Learning Approach for Improving Security in Network Slicing," GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 915-920, doi: 10.1109/GLOBECOM48099.2022.10001190.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/globecom48099.2022.10001190
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202401171281
Tiivistelmä
Abstract

Network Slicing (NS) is a predominant technology in future telecommunication networks, including Fifth Generation (5G), which supports the realization of heterogeneous applications and services. It allows the allocation of a dedicated logical network slice of the physical network to each application. Security is one of the paramount challenges in an NS ecosystem. Several technologies, including Machine Learning (ML), have been proposed to mitigate security challenges in 5G networks. However, the use of ML for NS security is not properly implemented. Especially, the scarcity of coordination and the difficulties of privacy-protected information sharing between slices cause failures and performance degradation of these ML based NS security solutions. To address this issue, this paper proposes a novel Federated Learning (FL) based coordinated security orchestration architecture named Federated Learning enabled Security Orchestrator (FLeSO) to centrally perform security operations in a slicing ecosystem while preserving the privacy of the data. In addition, the proposed FLeSO architecture enables features such as proactive security deployment and steady security level maintenance independent of the slicing strategy. The proposed architecture is implemented in a real-world slicing testbed, and a comprehensive set of experiments are performed to evaluate the effectiveness of the proposed FLeSO architecture. The test results illustrate the significant advantage of the proposed approach over the legacy system in terms of improving the security of an NS ecosystem.
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen