Strong magnetic exchange coupling in Ln(2) metallocenes attained by the trans-coordination of a tetrazinyl radical ligand
Mavragani, Niki; Kitos, Alexandros A.; Hrubý, Jakub; Hill, Stephen; Mansikkamäki, Akseli; Moilanen, Jani O.; Murugesu, Muralee (2023-06-16)
Mavragani, Niki
Kitos, Alexandros A.
Hrubý, Jakub
Hill, Stephen
Mansikkamäki, Akseli
Moilanen, Jani O.
Murugesu, Muralee
Royal society of chemistry
16.06.2023
Inorg. Chem. Front., 2023,10, 4197-4208
https://rightsstatements.org/vocab/InC/1.0/
© the Partner Organisations 2023
https://rightsstatements.org/vocab/InC/1.0/
© the Partner Organisations 2023
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202401031049
https://urn.fi/URN:NBN:fi:oulu-202401031049
Tiivistelmä
Abstract
A combination of high-performing lanthanide metallocenes and tetrazine-based radical ligands leads to a new series of radical-bridged dinuclear lanthanide metallocenes; [(Cp*2LnIII)2(bpytz˙−)][BPh4] (where Ln = Gd (1), Tb (2), Dy (3) and Y (4); Cp* = pentamethylcyclopentadienyl; bpytz = 3,6-bis(3,5-dimethyl-pyrazolyl)-1,2,4,5-tetrazine). The formation of the radical species is achieved via a controlled, stepwise synthesis and verified in all complexes by X-ray crystallography and SQUID magnetometry, as well as EPR spectroscopy of 4. Through the judicious choice of the Cp* ancillary ligands and by taking advantage of the steric effects imposed by their bulkiness, we were able to promote the trans coordination mode of the bpytz˙− radical anion that enables stronger magnetic exchange coupling compared to the cis fashion. This yields a JGd–rad = −14.0 cm−1 in 1, which is the strongest exchange coupling observed in organic monoanionic radical-bridged lanthanide metallocene systems. The strong Ln-rad exchange coupling was further confirmed by high-frequency EPR (HF-EPR) spectroscopy and broken-symmetry (BS) density functional theory (DFT) calculations. This combined with the highly anisotropic nature of TbIII and DyIII ions in 2 and 3, respectively, leads to strong SMM behavior and slow relaxation of the magnetization at zero fields.
A combination of high-performing lanthanide metallocenes and tetrazine-based radical ligands leads to a new series of radical-bridged dinuclear lanthanide metallocenes; [(Cp*2LnIII)2(bpytz˙−)][BPh4] (where Ln = Gd (1), Tb (2), Dy (3) and Y (4); Cp* = pentamethylcyclopentadienyl; bpytz = 3,6-bis(3,5-dimethyl-pyrazolyl)-1,2,4,5-tetrazine). The formation of the radical species is achieved via a controlled, stepwise synthesis and verified in all complexes by X-ray crystallography and SQUID magnetometry, as well as EPR spectroscopy of 4. Through the judicious choice of the Cp* ancillary ligands and by taking advantage of the steric effects imposed by their bulkiness, we were able to promote the trans coordination mode of the bpytz˙− radical anion that enables stronger magnetic exchange coupling compared to the cis fashion. This yields a JGd–rad = −14.0 cm−1 in 1, which is the strongest exchange coupling observed in organic monoanionic radical-bridged lanthanide metallocene systems. The strong Ln-rad exchange coupling was further confirmed by high-frequency EPR (HF-EPR) spectroscopy and broken-symmetry (BS) density functional theory (DFT) calculations. This combined with the highly anisotropic nature of TbIII and DyIII ions in 2 and 3, respectively, leads to strong SMM behavior and slow relaxation of the magnetization at zero fields.
Kokoelmat
- Avoin saatavuus [38824]