Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis of porous dielectric materials for future wireless high frequency applications

Pálvölgyi, Petra (2023-01-13)

 
Avaa tiedosto
isbn978-952-62-3566-0.pdf (3.391Mt)
isbn978-952-62-3566-0_meta.xml (114.1Kt)
isbn978-952-62-3566-0_solr.xml (94.63Kt)
Lataukset: 


Pálvölgyi, Petra
University of Oulu
13.01.2023
Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:9789526235660

Kuvaus

Academic dissertation to be presented with the assent of the Doctoral Programme Committee of Information Technology and Electrical Engineering of the University of Oulu for public defence in the OP auditorium (L10), Linnanmaa, on 20 January 2023, at 12 noon
Tiivistelmä

Abstract

In future, high frequency applications and devices need to be able to cope with ultra-reliable and extremely low-latency data transmission, thus dielectrics of substrates and other structural components are expected to have low relative permittivity and loss factor to ensure the ideal propagation of electromagnetic waves; this may be achieved by introducing pores into the material.

In the present work, various porous silica-based dielectric materials and composites with excellent electromagnetic properties at millimeter wave frequency bands and beyond have been developed. First, a porous composite of silica nanoshells and cellulose nanofibers was made having permittivity and loss factor of 1.19 and 0.01 at 300 GHz, respectively. Next, to achieve even better electromagnetic performance, a nanocellulose film-enveloped silica foam was synthetized with a porosity of 98.9%, resulting in extremely low permittivity and loss factor (1.02 and 0.0003, respectively at 300 GHz). The feasibility of the two silica-cellulose-based materials for high frequency applications was demonstrated by sputtering thin metal film patterns on their surfaces for filter and lens applications operating at 300 GHz. The synthetized dielectrics are suitable candidates for devices operating at higher frequencies, according to their electromagnetic properties, measured up to 2 THz. Finally, our research was focusing on porous dielectric materials which had higher mechanical strength; therefore, porous composites of silica nanoshells and poly(methyl methacrylate) were synthetized, having dielectric permittivity and loss factor of 1.51 and 0.004, respectively, at 200 GHz. Capitalizing on the thermoplastic behavior of the composite, it was processed further by hot pressing in a mold to produce a bullet shaped refractive lens, with operating frequency at around 140 GHz.

The results presented in this thesis show a great potential of porous silica materials as dielectric substrates for future high frequency devices. Although the developed materials are highly porous, the silica nanostructures, together with the binders or envelope films, could form structural components having sufficient surface smoothness to support metal micropatterns of split-ring resonator arrays and Fresnel lenses or to form air-matter interfaces suitable for refractive components such as bullet-shaped lenses.

 

Tiivistelmä

Tulevaisuuden suurtaajuussovelluksissa laitteiden on kyettävä erittäin luotettavaan ja alhaisen viiveen tiedonsiirtoon, joten substraateilta ja muiden rakenteellisten komponenttien dielekteiltä odotetaan sekä alhaista suhteellista permittiivisyyttä että häviökerrointa sähkömagneettisten aaltojen ihanteellisen etenemisen varmistamiseksi. Tämä voidaan saavuttaa esimerkiksi lisäämällä materiaaliin huokoisuutta.

Tässä työssä on kehitetty erilaisia huokoisia piidioksidipohjaisia dielektrisiä materiaaleja ja komposiitteja, joilla on erinomaiset sähkömagneettiset ominaisuudet millimetrin ja sitä pienemmillä aallonpituuksilla. Ensimmäisenä valmistettu materiaali oli huokoinen piidioksidin nanokuorista ja selluloosananokuiduista koostuva komposiitti, jonka permittiivisyys ja häviökerroin olivat 1.19 ja 0.01 300 GHz:n taajuudella. Vielä paremman sähkömagneettisen suorituskyvyn saavuttamiseksi syntetisoitiin nanoselluloosakalvopäällysteinen silikavaahto, jonka huokoisuus oli 98.9 %, mikä johti erittäin matalaan permittiivisyyteen ja häviökertoimeen (vastaavasti 1.02 ja 0.0003 300 GHz:n taajuudella). Näiden kahden silika-selluloosapohjaisen materiaalin soveltuvuus suurtaajuussovelluksiin osoitettiin sputteroimalla metallisia ohutkalvokuvioita materiaalien pinnoille suodatin- ja linssisovelluksia varten. Vaikka esitetyt laitteet on suunniteltu toimimaan 300 GHz:n taajuudella, syntetisoidut dielektridit soveltuvat sähkömagneettisilta ominaisuuksiltaan myös korkeammilla taajuuksilla toimiviin laitteisiin aina 2 THz:iin asti. Viimeisenä vaiheena tutkimus keskittyi paremman mekaaninen lujuuden huokoisiin dielektrisiin materiaaleihin. Nämä komposiitit syntetisoitiin huokoisista piidioksidin nanokuorista ja poly(metyylimetakrylaatista), ja niiden dielektrinen permittiivisyys ja häviökerroin saavuttivat 1.51 ja 0.004 arvot 200 GHz:llä. Hyödyntäen komposiitin termoplastisia ominaisuuksia se jatkoprosessoitiin kuumapuristamalla muotissa luodin muotoiseksi taittolinssiksi, jonka toimintataajuus oli noin 140 GHz.

Tässä väitöskirjassa esitetyt tulokset osoittavat huokoisten piidioksidimateriaalien suuren potentiaalin tulevaisuuden suurtaajuuslaitteiden dielektrisinä materiaaleina. Vaikka kehitetyt materiaalit ovat erittäin huokoisia, piidioksidin nanorakenteet voivat yhdessä sideaineiden tai -kalvojen kanssa muodostaa rakenteellisia komponentteja, joiden pinta on riittävän sileä tukemaan halkaistujen rengasresonaattoriryhmien ja Fresnel-linssien metallisia mikrokuvioita tai muodostamaan ilma-materiaalirajapintoja refraktiokomponenteille, kuten luodin muotoisille linsseille.

 

Original papers

Original papers are not included in the electronic version of the dissertation.

  1. Pálvölgyi, P. S., Nelo, M., Pitkänen, O., Peräntie, J., Liimatainen, H., Myllymäki, S., Jantunen, H., & Kordas, K. (2020). Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. Nanotechnology, 31(43), 435203. https://doi.org/10.1088/1361-6528/aba4cc

    Self-archived version

  2. Pálvölgyi, P. S., Sebők, D., Szenti, I., Bozo, E., Ervasti, H., Pitkänen, O., Hannu, J., Jantunen, H., Leinonen, M. E., Myllymäki, S., Kukovecz, A., & Kordas, K. (2021). Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies. Nano Research, 14(5), 1450–1456. https://doi.org/10.1007/s12274-020-3201-2

    Self-archived version

  3. Kokkonen, M., Palvolgyi, P. S., Sliz, R., Jantunen, H., Kordas, K., & Myllymäki, S. (2022). An ultra-low loss and light weight cellulose coated silica foam for planar Fresnel zone plate lens applications in future 6G devices. IEEE Antennas and Wireless Propagation Letters. Advance online publication. https://doi.org/10.1109/LAWP.2022.3203434

    Self-archived version

  4. Palvölgyi, P. S., Kokkonen, M., Sliz, R., Jantunen, H., Kordas, K., Myllymäki, S. (2022). Porous low-loss silica-PMMA dielectric nanocomposite for high frequency bullet lens applications. Manuscript submitted for publication. https://doi.org/10.1002/adpr.202200208

    Self-archived version

 

Osajulkaisut

Osajulkaisut eivät sisälly väitöskirjan elektroniseen versioon.

  1. Pálvölgyi, P. S., Nelo, M., Pitkänen, O., Peräntie, J., Liimatainen, H., Myllymäki, S., Jantunen, H., & Kordas, K. (2020). Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. Nanotechnology, 31(43), 435203. https://doi.org/10.1088/1361-6528/aba4cc

    Rinnakkaistallennettu versio

  2. Pálvölgyi, P. S., Sebők, D., Szenti, I., Bozo, E., Ervasti, H., Pitkänen, O., Hannu, J., Jantunen, H., Leinonen, M. E., Myllymäki, S., Kukovecz, A., & Kordas, K. (2021). Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies. Nano Research, 14(5), 1450–1456. https://doi.org/10.1007/s12274-020-3201-2

    Rinnakkaistallennettu versio

  3. Kokkonen, M., Palvolgyi, P. S., Sliz, R., Jantunen, H., Kordas, K., & Myllymäki, S. (2022). An ultra-low loss and light weight cellulose coated silica foam for planar Fresnel zone plate lens applications in future 6G devices. IEEE Antennas and Wireless Propagation Letters. Advance online publication. https://doi.org/10.1109/LAWP.2022.3203434

    Rinnakkaistallennettu versio

  4. Palvölgyi, P. S., Kokkonen, M., Sliz, R., Jantunen, H., Kordas, K., Myllymäki, S. (2022). Porous low-loss silica-PMMA dielectric nanocomposite for high frequency bullet lens applications. Manuscript submitted for publication. https://doi.org/10.1002/adpr.202200208

    Rinnakkaistallennettu versio

 
Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen