Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning human-blockage direction prediction from indoor mmWave radio measurements

Susarla, Praneeth; Jokinen, Markku; Tervo, Nuutti; Leinonen, Marko E.; Bordallo Lopez, Miguel; Juntti, Markku; Silven, Olli (2023-10-23)

 
Avaa tiedosto
nbnfi-fe20231116147093.pdf (1.052Mt)
nbnfi-fe20231116147093_meta.xml (48.75Kt)
nbnfi-fe20231116147093_solr.xml (39.12Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICCWorkshops57953.2023.10283569

Susarla, Praneeth
Jokinen, Markku
Tervo, Nuutti
Leinonen, Marko E.
Bordallo Lopez, Miguel
Juntti, Markku
Silven, Olli
Institute of Electrical and Electronics Engineers
23.10.2023

P. Susarla et al., "Learning Human-Blockage Direction Prediction from Indoor mmWave Radio Measurements," 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023, pp. 1057-1062, doi: 10.1109/ICCWorkshops57953.2023.10283569

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICCWorkshops57953.2023.10283569
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe20231116147093
Tiivistelmä

Abstract

Millimeter wave (mmWave) beamforming is a vital component of the fifth generation (5G) new radio (NR) and beyond wireless communication systems. The usage of mmWave narrow beams encounters frequent signal attenuation due to random human blockages in indoor environments. Human blockage predictions can jointly improve the signal quality as well as passively sense human activities during mmWave communication. Human sensing using wireless fidelity (WiFi) systems has earlier been studied using receiver signal strength indicator (RSSI) signal level fluctuations based on distance measurements. Other conventional approaches using cameras, lidars, radars, etc. require additional hardware deployments. Current device-free WiFi sensing approaches use vendor-specific channel state information to obtain fine-grained human blockage predictions. Our novelty in this work is to obtain fine-grained human blockage direction predictions in mmWave spectrum, using a time series of RSSI measurements and build fingerprints. We perform experiments to construct a Human Millimetre-wave Radio Blockage Detection (HuMRaBD) dataset and observe human influence in different radio beam directions during each radio initial access procedure. We design a multi layer perceptron (MLP) framework to analyze the HuMRaBD dataset over coarse-grained and fine-grained mmWave blockage directions from static and dynamic human movements. The results show that our trained MLP-trained models can simultaneously sense multiple indoor human radio-blockage directions at an average F1 score of 0.84 and area under curve (AUC) score of 0.95 during mmWave communication.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen