Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Origin of enhanced photocatalytic activity in direct band gap g-C₃N₄ nanoribbons with tunable electronic properties for water-splitting reaction : a first-principles study

Kumar, Anwesh; Komsa, Hannu-Pekka; Praveen Pathak, Diksha; Marriyappan Sivagnanam, Balathanigaimani; Sinha, A. S. K.; Karthikeyan, J. (2022-11-09)

 
Avaa tiedosto
nbnfi-fe202301132794.pdf (49.85Mt)
nbnfi-fe202301132794_meta.xml (40.19Kt)
nbnfi-fe202301132794_solr.xml (42.27Kt)
Lataukset: 

URL:
https://doi.org/10.1021/acs.jpcc.2c03679

Kumar, Anwesh
Komsa, Hannu-Pekka
Praveen Pathak, Diksha
Marriyappan Sivagnanam, Balathanigaimani
Sinha, A. S. K.
Karthikeyan, J.
American Chemical Society
09.11.2022

Anwesh Kumar, Hannu-Pekka Komsa, Diksha Praveen Pathak, Balathanigaimani Marriyappan Sivagnanam, A. S. K. Sinha, and J. Karthikeyan, The Journal of Physical Chemistry C 2022 126 (46), 19627-19636, DOI: 10.1021/acs.jpcc.2c03679

https://rightsstatements.org/vocab/InC/1.0/
This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © 2022 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.jpcc.2c03679.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1021/acs.jpcc.2c03679
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301132794
Tiivistelmä

Abstract

In this work, we employ density functional theory (DFT) to investigate the edge atomic structures and atomic boundaries in graphitic carbon nitride (g-C₃N₄) nanoribbons to explore their role on structural stability and electronic and photocatalytic properties. Interestingly, the nanoribbon structures with mirror twin boundaries (MTBs) have higher structural stability than the conventional nanoribbon structures due to the C–C bond formations at the MTB region. Irrespective of their edge atomic structure, the curved and corrugated nanoribbons with direct band gap are thermodynamically more stable than the planar nanoribbons with indirect band gap. In addition, the distinct electronic structures of nanoribbons with and without MTB are calculated to understand their influence on the band gap and band edge positions of the nanoribbons. Very importantly, unlike the other nanostructures of g-C₃N₄, nanoribbons are shown to possess unique electronic structures that facilitate the tunable spatial separation of valence and conduction band states. This enhances the lifetime of excited charge carriers in nanoribbon morphology. To garner deep insights into the photocatalytic properties of the g-C₃N₄ monolayer and nanoribbons, the Gibbs free energies (ΔG) of hydrogen and oxygen evolution reaction intermediates are studied to identify the active sites. To this end, our DFT studies predict enhanced photocatalytic activity of g-C₃N₄ nanoribbons over the monolayer while providing new insights into the geometry, electronic structure, and photocatalytic properties of the nanoribbons, guiding the plausible development of g-C₃N₄ nanoribbons.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen