Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanism of iron integration into LiMn<sub>1.5</sub>Ni<sub>0.5</sub>O₄ for the electrocatalytic oxygen evolution reaction

Ahmed, Imtiaz; Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Singh, Harjinder; Mete, Shouvik; Patil, Ranjit A.; Saha, Monochura; Yadav, Ashok Kumar; Jha, Sambhu Nath; Mondal, Krishnakanta; Singh, Harishchandra; Ma, Yuan-Ron; Haldar, Krishna Kanta (2022-09-14)

 
Avaa tiedosto
nbnfi-fe202301051608.pdf (4.609Mt)
nbnfi-fe202301051608_meta.xml (59.88Kt)
nbnfi-fe202301051608_solr.xml (47.16Kt)
Lataukset: 

URL:
https://doi.org/10.1021/acs.energyfuels.2c02447

Ahmed, Imtiaz
Biswas, Rathindranath
Dastider, Saptarshi Ghosh
Singh, Harjinder
Mete, Shouvik
Patil, Ranjit A.
Saha, Monochura
Yadav, Ashok Kumar
Jha, Sambhu Nath
Mondal, Krishnakanta
Singh, Harishchandra
Ma, Yuan-Ron
Haldar, Krishna Kanta
American Chemical Society
14.09.2022

Energy Fuels 2022, 36, 19, 12160–12169. Publication Date:September 14, 2022 https://doi.org/10.1021/acs.energyfuels.2c02447

https://rightsstatements.org/vocab/InC/1.0/
© 2022 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Energy and Fuels, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.energyfuels.2c02447.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1021/acs.energyfuels.2c02447
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301051608
Tiivistelmä

Abstract

Spinel-type LiMn1.5Ni0.5O₄ has been paid temendrous consideration as an electrode material because of its low cost, high voltage, and stabilized electrochemical performance. Here, we demonstrate the mechanism of iron (Fe) integration into LiMn1.5Ni0.5O₄ via solution methods followed by calcination at a high temparature, as an efficient electrocatalyst for water splitting. Various microscopic and structural characterizations of the crystal structure affirmed the integration of Fe into the LiMn1.5Ni0.5O₄ lattice and the constitution of the cubic LiMn1.38Fe0.12Ni0.5O₄ crystal. Local structure analysis around Fe by extended X-ray absorption fine structure (EXAFS) showed Fe3+ ions in a six-coordinated octahedral environment, demonstrating incorporation of Fe as a substitute at the Mn site in the LiMn1.5Ni0.5O₄ host. EXAFS also confirmed that the perfectly ordered LiMn1.5Ni0.5O₄ spinel structure becomes disturbed by the fractional cationic substitution and also stabilizes the LiMn1.5Ni0.5O₄ structure with structural disorder of the Ni²⁺ and Mn⁴⁺ ions in the 16d octahedral sites by Fe²⁺ and Fe³⁺ ions. However, we have found that Mn³⁺ ion production from the redox reaction between Mn⁴⁺ and Fe²⁺ influences the electronic conductivity significantly, resulting in improved electrochemical oxygen evolution reaction (OER) activity for the LiMn1.38Fe0.12Ni0.5O4 structure. Surface-enhanced Fe in LiMn1.38Fe0.12Ni0.5O₄ serves as the electrocatalytic active site for OER, which was verified by the density functional theory study.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen